2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA **Guideline for the Management of Heart Failure**

A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America

Developed in Collaboration With the American Academy of Family Physicians, American College of Chest Physicians, and International Society for Heart and Lung Transplantation

WRITING GROUP MEMBERS*

Clyde W. Yancy, MD, MSc, MACC, FAHA, FHFSA, Chair Mariell Jessup, MD, FACC, FAHA, Vice Chair

Biykem Bozkurt, MD, PhD, FACC, FAHA*† Javed Butler, MD, MBA, MPH, FACC, FAHA*: Donald E. Casey, Jr, MD, MPH, MBA, FACC§ Monica M. Colvin, MD, FAHA Mark H. Drazner, MD, MSc, FACC, FAHA, FHFSA: Gerasimos S. Filippatos, MD* Gregg C. Fonarow, MD, FACC, FAHA, FHFSA*: Michael M. Givertz, MD, FACC, FHFSA*¶

Steven M. Hollenberg, MD, FACC# JoAnn Lindenfeld, MD, FACC, FAHA, FHFSA*¶ Frederick A. Masoudi, MD, MSPH, FACC** Patrick E. McBride, MD, MPH, FACC⁺⁺ Pamela N. Peterson, MD, FACC, FAHA: America Lynne Warner Stevenson, MD, FACC*1 Cheryl Westlake, PhD, RN, ACNS-BC, FAHA, FHFSA¶

ACC/AHA TASK FORCE MEMBERS

Glenn N. Levine, MD, FACC, FAHA, Chair Patrick T. O'Gara, MD, FACC, FAHA, Chair-Elect Jonathan L. Halperin, MD, FACC, FAHA, Immediate Past Chair 11 Sana M. Al-Khatib, MD, MHS, FACC, FAHA Kim K. Birtcher, PharmD, MS, AACC Biykem Bozkurt, MD, PhD, FACC, FAHA Ralph G. Brindis, MD, MPH, MACC^{‡‡} Joaquin E. Cigarroa, MD, FACC Lesley H. Curtis, PhD, FAHA Lee A. Fleisher, MD, FACC, FAHA

Federico Gentile, MD, FACC Samuel Gidding, MD, FAHA Mark A. Hlatky, MD, FACC John Ikonomidis, MD, PhD, FAHA José Joglar, MD, FACC, FAHA Susan J. Pressler, PhD, RN, FAHA Duminda N. Wijeysundera, MD, PhD

*Writing group members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. +ACC/AHA Task Force on Clinical Practice Guidelines Liaison. ‡ACC/AHA Representative. §ACP Representative. IISHLT Representative. Representative. #CHEST Representative. **ACC/AHA Task Force on Performance Measures Representative. ††AAFP Representative. ‡‡Former Task Force member; current member during the writing effort.

This document was approved by the American College of Cardiology Clinical Policy Approval Committee, the American Heart Association Science Advisory and Coordinating Committee, the American Heart Association Executive Committee, and the Heart Failure Society of America Executive Committee in April 2017.

The Comprehensive RWI Data Supplement table is available with this article at http://circ.ahajournals.org/lookup/suppl/doi:10.1161/CIR.00000000000000509/-/DC1.

The American Heart Association requests that this document be cited as follows: Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, Drazner MH, Filippatos GS, Fonarow GC, Givertz MM, Hollenberg SM, Lindenfeld J, Masoudi FA, McBride PE, Peterson PN, Stevenson LW, Westlake C. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation. 2017; ••e:e••-e••. DOI: 10.1161/CIR.000000000000509.

This article has been copublished in the *Journal of the American College of Cardiology* and the *Journal of Cardiac Failure*.

Copies: This document is available on the World Wide Web sites of the American College of Cardiology (<u>www.acc.org</u>), the American Heart Association (<u>professional.heart.org</u>), and the Heart Failure Society of America (<u>www.hfsa.org</u>). A copy of the document is available at <u>http://professional.heart.org/statements</u> by using either "Search for Guidelines & Statements" or the "Browse by Topic" area. To purchase additional reprints, call 843-216-2533 or e-mail kelle.ramsay@wolterskluwer.com.

Expert peer review of AHA Scientific Statements is conducted by the AHA Office of Science Operations. For more on AHA statements and guidelines development, visit <u>http://professional.heart.org/statements</u>. Select the Association "Guidelines & Statements" drop-down menu, then click "Publication Development."

Permissions: Multiple copies, modification, alteration, enhancement, and/or distribution of this document are not permitted without the express permission of the American Heart Association. Instructions for obtaining permission are located at http://www.heart.org/HEARTORG/General/Copyright-Permission-Guidelines_UCM_300404_Article.jsp. A link to the "Copyright Permissions Request Form" appears on the right side of the page.

(Circulation. 2017;000:e000-e000. DOI: 10.1161/CIR.000000000000509.)

© 2017 by the American College of Cardiology Foundation, the American Heart Association, Inc., and the Heart Failure Society of America.

Table of Contents

Preamble	4
1. Introduction	
1.1. Methodology and Evidence Review	
1.2. Organization of the Writing Group	
1.3. Document Review and Approval	
6. Initial and Serial Evaluation of the HF Patient	
6.3. Biomarkers	
6.3.1. Biomarkers for Prevention: Recommendation	
6.3.2. Biomarkers for Diagnosis: Recommendation	
6.3.3. Biomarkers for Prognosis or Added Risk Stratification: Recommendations	
7. Treatment of Stages A to D	
7.3. Stage C	14
7.3.2. Pharmacological Treatment for Stage C HF With Reduced Ejection Fraction:	
Recommendations	
7.3.2.10. Renin-Angiotensin System Inhibition With Angiotensin-Converting Enzy	
Angiotensin Receptor Blocker or ARNI: Recommendations	
7.3.2.11. Ivabradine: Recommendation	
7.3.3. Pharmacological Treatment for Stage C HFpEF: Recommendations9. Important Comorbidities in HF	American 22
9. Important Comorbidities in HF	
9.2. Anemia: Recommendations	
9.5. Hypertension (New Section).	
9.5.1. Treating Hypertension to Reduce the Incidence of HF: Recommendation	
9.5.2. Treating Hypertension in Stage C HFrEF: Recommendation	
9.5.3. Treating Hypertension in Stage C HFpEF: Recommendation	
9.6. Sleep Disordered Breathing: Recommendations	
References	
Appendix 1. Author Relationships With Industry and Other Entities (Relevant)	
Appendix 2. Reviewer Relationships With Industry and Other Entities (Comprehensive)	
Appendix 3. Abbreviations	

Preamble

Since 1980, the American College of Cardiology (ACC) and American Heart Association (AHA) have translated scientific evidence into clinical practice guidelines (guidelines) with recommendations to improve cardiovascular health. These guidelines, which are based on systematic methods to evaluate and classify evidence, provide a cornerstone for quality cardiovascular care. The ACC and AHA sponsor the development and publication of guidelines without commercial support, and members of each organization volunteer their time to the writing and review efforts. Guidelines are official policy of the ACC and AHA.

Intended Use

Practice guidelines provide recommendations applicable to patients with or at risk of developing cardiovascular disease. The focus is on medical practice in the United States, but guidelines developed in collaboration with other organizations may have a global impact. Although guidelines may be used to inform regulatory or payer decisions, their intent is to improve patients' quality of care and align with patients' interests. Guidelines are intended to define practices meeting the needs of patients in most, but not all, circumstances and should not replace clinical judgment.

Clinical Implementation

Guideline recommended management is effective only when followed by healthcare providers and patients. Adherence to recommendations can be enhanced by shared decision making between healthcare providers and patients, with patient engagement in selecting interventions based on individual values, preferences, and associated conditions and comorbidities.

Methodology and Modernization

The ACC/AHA Task Force on Clinical Practice Guidelines (Task Force) continuously reviews, updates, and modifies guideline methodology on the basis of published standards from organizations including the Institute of Medicine (1, 2) and on the basis of internal reevaluation. Similarly, the presentation and delivery of guidelines are reevaluated and modified on the basis of evolving technologies and other factors to facilitate optimal dissemination of information at the point of care to healthcare professionals. Given time constraints of busy healthcare providers and the need to limit text, the current guideline format delineates that each recommendation be supported by limited text (ideally, <250 words) and hyperlinks to supportive evidence summary tables. Ongoing efforts to further limit text are underway. Recognizing the importance of cost-value considerations in certain guidelines, when appropriate and feasible, an analysis of the value of a drug, device, or intervention may be performed in accordance with the ACC/AHA methodology (3).

To ensure that guideline recommendations remain current, new data are reviewed on an ongoing basis, with full guideline revisions commissioned in approximately 6-year cycles. Publication of new, potentially practice-changing study results that are relevant to an existing or new drug, device, or management strategy will prompt evaluation by the Task Force, in consultation with the relevant guideline writing committee, to determine whether a focused update should be commissioned. For additional information and policies regarding guideline development, we encourage readers to consult the ACC/AHA guideline methodology manual (4) and other methodology articles (5-8).

Selection of Writing Committee Members

The Task Force strives to avoid bias by selecting experts from a broad array of backgrounds. Writing committee members represent different geographic regions, sexes, ethnicities, races, intellectual perspectives/biases, and scopes of clinical practice. The Task Force may also invite organizations and professional societies with related interests and expertise to participate as partners, collaborators, or endorsers.

Relationships With Industry and Other Entities

http://www.acc.org/guidelines/about-guidelines-and-clinical-documents/guidelines-and-documents-task-forces.

Evidence Review and Evidence Review Committees

When developing recommendations, the writing committee uses evidence-based methodologies that are based on all available data (4-7). Literature searches focus on randomized controlled trials (RCTs) but also include registries, nonrandomized comparative and descriptive studies, case series, cohort studies, systematic reviews, and expert opinion. Only key references are cited.

An independent evidence review committee (ERC) is commissioned when there are 1 or more questions deemed of utmost clinical importance that merit formal systematic review. This systematic review will strive to determine which patients are most likely to benefit from a drug, device, or treatment strategy and to what degree. Criteria for commissioning an ERC and formal systematic review include: a) the absence of a current authoritative systematic review, b) the feasibility of defining the benefit and risk in a time frame consistent with the writing of a guideline, c) the relevance to a substantial number of patients, and d) the likelihood that the findings can be translated into actionable recommendations. ERC members may include methodologists, epidemiologists, healthcare providers, and biostatisticians. When a formal systematic review has been commissioned, the recommendations developed by the writing committee on the basis of the systematic review are marked with "^{SR}".

Guideline-Directed Management and Therapy

The term *guideline-directed management and therapy* (GDMT) encompasses clinical evaluation, diagnostic testing, and pharmacological and procedural treatments. For these and all recommended drug treatment regimens, the reader should confirm the dosage by reviewing product insert material and evaluate the treatment regimen for contraindications and interactions. The recommendations are limited to drugs, devices, and treatments approved for clinical use in the United States.

Class of Recommendation and Level of Evidence

The Class of Recommendation (COR) indicates the strength of the recommendation, encompassing the estimated magnitude and certainty of benefit in proportion to risk. The Level of Evidence (LOE) rates the

quality of scientific evidence that supports the intervention on the basis of the type, quantity, and consistency of data from clinical trials and other sources (Table 1) (4-6).

Glenn N. Levine, MD, FACC, FAHA Chair, ACC/AHA Task Force on Clinical Practice Guidelines

> American Heart Association

Circulation

1. Introduction

The purpose of this focused update is to update the "2013 ACCF/AHA Guideline for the Management of Heart Failure" (9) (2013 HF guideline) in areas in which new evidence has emerged since its publication. For this update and future heart failure (HF) guidelines, the Heart Failure Society of America (HFSA) has partnered with the ACC and AHA to provide coordinated guidance on the management of HF.

The scope of the focused update includes revision to the sections on biomarkers; new therapies indicated for stage C HF with reduced ejection fraction (HFrEF); updates on HF with preserved ejection fraction (HFpEF); new data on important comorbidities, including sleep apnea, anemia, and hypertension; and new insights into the prevention of HF.

This focused update represents the second part of a 2-stage publication; with the first part having been published as the "2016 ACC/AHA/HFSA Focused Update on New Pharmacological Therapy for Heart Failure" (10), which introduced guidance on new therapies, specifically for the use of an angiotensin receptor–neprilysin inhibitor (ARNI) (valsartan/sacubitril) and a sinoatrial node modulator (ivabradine). That focused update was published concurrently with the European Society of Cardiology's complete guideline, "2016 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure" (11).

1.1. Methodology and Evidence Review

To identify key data that influence guideline recommendations, the Task Force and members of the 2013 HF guideline writing committee reviewed clinical trials that were presented at the annual scientific meetings of the ACC, AHA, and European Society of Cardiology and other scientific meetings and that were published in peer-reviewed format from April 2013 through November 2016. The evidence is summarized in tables in the Online Data Supplement

(http://circ.ahajournals.org/lookup/suppl/doi:10.1161/CIR.0000000000000000/-/DC2). All

recommendations (new, modified, and unchanged) for each clinical section are included to provide a comprehensive assessment. The text explains new and modified recommendations, whereas recommendations from the previous guideline that have been deleted or superseded no longer appear. Please consult the full-text version of the 2013 HF guideline (9) for text and evidence tables supporting the unchanged recommendations and for clinical areas not addressed in this focused update. Individual recommendations in this focused update will be incorporated into the full-text guideline in the future. Recommendations from the prior guideline that remain current have been included for completeness, but the LOE reflects the COR/LOE system used when the recommendations were initially developed. New and modified recommendations in this focused update reflect the latest COR/LOE system, in which LOE

B and C are subcategorized for greater specificity (4-6). The section numbers correspond to the full-text guideline sections.

1.2. Organization of the Writing Group

For this focused update, representative members of the 2013 HF guideline writing committee were invited to participate. They were joined by additional invited members to form a new writing group, which is referred to as the 2017 HF focused update writing group. Members were required to disclose all RWI relevant to the data under consideration. The group was composed of experts representing general cardiologists, HF and transplantation specialists, electrophysiologists, pharmacists, and general internists. The 2017 HF focused update writing group included representatives from the ACC, AHA, and HFSA, as well as the American Academy of Family Physicians, American College of Chest Physicians, American College of Physicians, and International Society for Heart and Lung Transplantation.

1.3. Document Review and Approval

The focused update was reviewed by 2 official reviewers each nominated by the ACC, AHA, and HFSA; 1 reviewer each from the American Academy of Family Physicians, American College of Chest Physicians, and International Society for Heart and Lung Transplantation; and 19 individual content reviewers. Reviewers' RWI information is published in this document (Appendix 2).

This document was approved for publication by the governing bodies of the ACC, AHA, and

HFSA.

Table 1. Applying Class of Recommendation and Level of Evidence to Clinical Strategies, Interventions, Treatments, or Diagnostic Testing in Patient Care* (Updated August 2015)

CLASS I (STRONG) Be	enefit >>> Risk
 Suggested phrases for writing recommendations: Is recommended Is indicated/useful/effective/beneficial Should be performed/administered/other Comparative-Effectiveness Phrases†: Treatment/strategy A is recommended/indic preference to treatment B Treatment A should be chosen over treatment 	
CLASS IIa (MODERATE) I	Benefit >> Risk
Suggested phrases for writing recommendations: Is reasonable Can be useful/effective/beneficial Comparative-Effectiveness Phrases†: Treatment/strategy A is probably recommend preference to treatment B It is reasonable to choose treatment A over treatment B	ed/indicated in
CLASS IIb (WEAK)	Benefit \geq Risk
Suggested phrases for writing recommendations: May/might be reasonable May/might be considered Usefulness/effectiveness is unknown/unclear/u or not well established	ıncertain
CLASS III: No Benefit (MODERATE) (Generally, LOE A or B use only)	Benefit = Risk
Suggested phrases for writing recommendations: Is not recommended Is not indicated/useful/effective/beneficial Should not be performed/administered/other	
CLASS III: Harm (STRONG)	Risk > Benefit
Suggested phrases for writing recommendations:	

- Associated with excess morbidity/mortality
- Should not be performed/administered/other

LEVEL (QUALITY) OF EVIDENCE‡

LEVEL A

- High-quality evidence‡ from more than 1 RCT
- Meta-analyses of high-quality RCTs
- One or more RCTs corroborated by high-quality registry studies

LEVEL B-R

- Moderate-quality evidence‡ from 1 or more RCTs
- Meta-analyses of moderate-quality RCTs

LEVEL B-NR

(Nonrandomized)

(Randomized)

- Moderate-quality evidence‡ from 1 or more well-designed, well-executed nonrandomized studies, observational studies, or registry studies
- Meta-analyses of such studies

LEVEL C-LD

- Randomized or nonrandomized observational or registry studies with limitations of design or execution
- Meta-analyses of such studies
- Physiological or mechanistic studies in human subjects

LEVEL C-EO

Consensus of expert opinion based on clinical experience

COR and LOE are determined independently (any COR may be paired with any LOE).

A recommendation with LOE C does not imply that the recommendation is weak. Many important clinical questions addressed in guidelines do not lend themselves to clinical trials. Although RCTs are unavailable, there may be a very clear clinical consensus that a particular test or therapy is useful or effective.

- * The outcome or result of the intervention should be specified (an improved clinical outcome or increased diagnostic accuracy or incremental prognostic information).
- † For comparative-effectiveness recommendations (COR I and IIa; LOE A and B only), studies that support the use of comparator verbs should involve direct comparisons of the treatments or strategies being evaluated.
- ‡ The method of assessing quality is evolving, including the application of standardized, widely used, and preferably validated evidence grading tools; and for systematic reviews, the incorporation of an Evidence Review Committee.

COR indicates Class of Recommendation; EO, expert opinion; LD, limited data; LOE, Level of Evidence; NR, nonrandomized; R, randomized; and RCT, randomized controlled trial.

6. Initial and Serial Evaluation of the HF Patient

6.3. Biomarkers

Assays for BNP (B-type natriuretic peptide) and NT-proBNP (N-terminal pro-B-type natriuretic peptide), which are both natriuretic peptide biomarkers, have been used increasingly to establish the presence and severity of HF. In general, both natriuretic peptide biomarker values track similarly, and either can be used in patient care settings as long as their respective absolute values and cutpoints are not used interchangeably. Notably, BNP, but not NT-proBNP, is a substrate for neprilysin. Therefore, ARNI increases BNP levels (12) but not NT-proBNP levels (13). Note that the type of natriuretic peptide assay that has been performed must be considered during interpretation of natriuretic peptide biomarker levels in patients on ARNI. In 2 studies with ARNI, NT-proBNP levels were reduced (12, 14), with the reduction in 1 study being associated with improved clinical outcomes (12).

A substantial evidence base exists that supports the use of natriuretic peptide biomarkers to assist in the diagnosis or exclusion of HF as a cause of symptoms (e.g., dyspnea, weight gain) in the setting of chronic ambulatory HF (15-21) or in the setting of acute care with decompensated HF (22-30), especially when the cause of dyspnea is unclear. The role of natriuretic peptide biomarkers in population screening to detect incident HF is emerging (31-37). Elevated plasma levels of natriuretic peptide biomarkers are associated with a wide variety of cardiac and noncardiac causes (Table 2) (38-42). Obesity may be associated with lower natriuretic peptide concentrations, and this may modestly reduce diagnostic sensitivity in morbidly obese patients (42).

Because of the absence of clear and consistent evidence for improvement in mortality and cardiovascular outcomes (43-62), there are insufficient data to inform specific guideline recommendations related to natriuretic peptide–guided therapy or serial measurements of BNP or NT-proBNP levels for the purpose of reducing hospitalization or deaths in the present document.

Like natriuretic peptides, cardiac troponin levels may be elevated in the setting of chronic or acute decompensated HF, suggesting myocyte injury or necrosis (63). Troponins I and T respond similarly for acute coronary syndromes and acute decompensated HF. Elevations in either troponin I or T levels in the setting of acute HF are of prognostic significance and must be interpreted in the clinical context (64).

In addition to natriuretic peptides and troponins (65-67), multiple other biomarkers, including those of inflammation, oxidative stress, vascular dysfunction, and myocardial and matrix remodeling, have been implicated in HF (68-71). Biomarkers of myocardial fibrosis, soluble ST2 receptor, and galectin-3 are predictive of hospitalization and death and may provide incremental prognostic value over natriuretic peptide levels in patients with HF (72-74). Strategies that combine multiple biomarkers may

ultimately prove beneficial in guiding HF therapy in the future, but multicenter studies with larger derivation and validation cohorts are needed (75, 76). Several emerging biomarkers await validation with well-defined outcome measures and prognostic accuracy before they can reach the clinical arena (77-84).

This section categorizes the role of biomarkers into prevention, diagnosis, prognosis, and added risk stratification to clarify evidence-based objectives of their use in clinical practice.

Table 2. Selected Potential (Causes of Elevated Natriuretic Pe	ptide Levels (38-4	1)

Table 2. Selected Totential Causes of Elevated Wathuretic Teptide Levels (3	5-41)
Cardiac	
HF, including RV syndromes	
Acute coronary syndromes	
Heart muscle disease, including LVH	
Valvular heart disease	
Pericardial disease	
Atrial fibrillation	
Myocarditis	
Cardiac surgery	
Cardioversion	
Toxic-metabolic myocardial insults, including cancer chemotherapy	
Noncardiac	American Heart
Advancing age	Association
Anemia	
Renal failure	
Pulmonary: obstructive sleep apnea, severe pneumonia	
Pulmonary hypertension	
Critical illness	
Bacterial sepsis	
Severe burns	
HF indicates heart failure; LVH, left ventricular hypertrophy; and RV, right ventricular.	
Modified from Table 8 of the 2013 HF guideline (9).	

6.3.1. Biomarkers for Prevention: Recommendation

Biomarkers: Recommendation for Prevention of HF			
COR	LOE	Recommendation	Comment/Rationale
IIa	B-R	For patients at risk of developing HF, natriuretic	NEW : New data suggest
		peptide biomarker–based screening followed by	that natriuretic peptide
		team-based care, including a cardiovascular	biomarker screening and
	ine Data	specialist optimizing GDMT, can be useful to	early intervention may
Supplemen	ts A and B.	prevent the development of left ventricular	prevent HF.
		dysfunction (systolic or diastolic) or new-onset HF	
		(85, 86).	
In a large-scale unblinded single-center study (STOP-HF [The St Vincent's Screening to Prevent Heart Failure])			
(85), patients at risk of HF (identified by the presence of hypertension, diabetes mellitus, or known vascular			
disease [e.g., stage A HF]), but without established left ventricular systolic dysfunction or symptomatic HF at			
baseline, were randomly assigned to receive screening with BNP testing or usual primary care. Intervention-			
group participants with BNP levels of \geq 50 pg/mL underwent echocardiography and were referred to a			
cardiovascular specialist who decided on further investigation and management. All patients received further			

cardiovascular specialist who decided on further investigation and management. All patients received further coaching by a specialist nurse who emphasized individual risk and the importance of adherence to medication

and healthy lifestyle behaviors. BNP-based screening reduced the composite endpoint of asymptomatic left ventricular dysfunction (systolic or diastolic) with or without newly diagnosed HF (85). Similarly, in another small, single-center RCT, accelerated up-titration of renin-angiotensin-aldosterone system antagonists and beta blockers reduced cardiac events in patients with diabetes mellitus and elevated NT-proBNP levels but without cardiac disease at baseline (86). Developing a standardized strategy to screen and intervene in patients at risk of HF can be difficult because of different definitions of HF risk, heterogeneity of prevalence in different populations, variable duration until clinical HF or left ventricular dysfunction develops, and variable interventions for risk factor modification or treatment. Further studies are needed to determine cost-effectiveness and risk of such screening, as well as its impact on quality of life (QoL) and mortality rate.

6.3.2. Biomarkers for Diagnosis: Recommendation

Biomarkers: Recommendation for Diagnosis			
COR	LOE	Recommendation	Comment/Rationale
_		In patients presenting with dyspnea, measurement	MODIFIED: 2013 acute
1	Α	of natriuretic peptide biomarkers is useful to	and chronic
	D .	support a diagnosis or exclusion of HF (15-24, 28-	recommendations have
See Onli		30).	been combined into a
Supplement	ts A and B.		diagnosis section.
Natriuretic peptide biomarker testing in the setting of chronic ambulatory HF provides incremental diagnostic			
value to clinical judgment, especially when the etiology of dyspnea is unclear (15-21). In emergency settings,			
natriuretic peptide biomarker levels usually have higher sensitivity than specificity and may be more useful for			
ruling out than ruling in HF (20). Although lower values of natriuretic peptide biomarkers exclude the presence			
of HF, and higher values have reasonably high positive predictive value to diagnose HF, clinicians should be			
aware that elevated plasma levels for both natriuretic peptides have been associated with a wide variety of			
cardiac and noncardiac causes (Table 2) (38-41).			

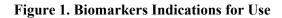
6.3.3. Biomarkers for Prognosis or Added Risk Stratification: Recommendations

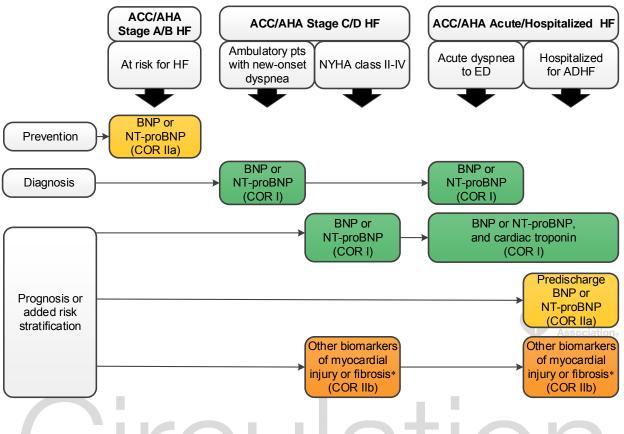
Biomarkers: Recommendations for Prognosis			
COR	LOE	Recommendations	Comment/Rationale
I	Α	Measurement of BNP or NT-proBNP is useful for establishing prognosis or disease severity in chronic	2013 recommendation remains current.
		HF (16, 87-92).	
I	Α	Measurement of baseline levels of natriuretic peptide biomarkers and/or cardiac troponin on	MODIFIED: Current recommendation
See Online Data Supplements A and B.		admission to the hospital is useful to establish a prognosis in acutely decompensated HF (27, 93-100).	emphasizes that it is admission levels of natriuretic peptide biomarkers that are useful.
Higher levels of natriuretic peptide biomarkers on admission are usually associated with greater risk for clinical			

Higher levels of natriuretic peptide biomarkers on admission are usually associated with greater risk for clinical outcomes, including all-cause and cardiovascular mortality, morbidity, and composite outcomes, across different time intervals in patients with decompensated HF (20, 27, 29, 93-101). Similarly, abnormal levels of circulating cardiac troponin are commonly found in patients with acute decompensated HF, often without obvious

myocardial ischemia or underlying coronary artery disease (CAD), and this is associated with worse clinical outcomes and higher risk of death (95, 99, 102, 103).

Studies have demonstrated incremental prognostic value of these biomarkers to standard approaches of cardiovascular disease risk assessment (29, 95). However, there were differences in the risk prediction models, assay cutpoints, and lengths of follow-up (29). Furthermore, not all patients may need biomarker measurement for prognostication, especially if they already have advanced HF with established poor prognosis or persistently elevated levels of biomarkers in former settings. Therefore, assays of natriuretic peptide biomarkers for incremental prognostication should not preclude good clinical judgment; an individualized approach to each patient is paramount.


	B-NR	During a HF hospitalization, a predischarge	NEW : Current
Ha		natriuretic peptide level can be useful to establish a	recommendation reflects
See Onli	ne Data	postdischarge prognosis (93, 96, 104-113).	new observational studies.


Supplements A and B.

Predischarge natriuretic peptide biomarker levels and the relative change in levels during hospital treatment are strong predictors of the risk of death or hospital readmission for HF (93, 96, 104-113). Several studies have suggested that predischarge natriuretic peptide biomarker levels had higher reclassification and discrimination value than clinical variables in predicting outcomes (96, 106, 108-111). Patients with higher predischarge levels and patients who do not have a decrease in natriuretic peptide biomarker levels during hospitalization have worse outcomes (96, 106, 108-111). Although observational or retrospective studies have suggested that patients with natriuretic peptide biomarker reduction had better outcomes than those without any changes or with a biomarker rise (93, 107, 112, 113), targeting a certain threshold, value, or relative change in these biomarker levels during hospitalization may not be practical or safe for every patient and has not been tested in a prospective large-scale trial. Clinical assessment and adherence to GDMT should be the emphasis, and the prognostic value of a predischarge value or relative changes does not imply the necessity for serial and repeated biomarker measurements during hospitalization.

	6 1		
		In patients with chronic HF, measurement of other	MODIFIED: 2013
IIb	B-NR	clinically available tests, such as biomarkers of	recommendations have
		myocardial injury or fibrosis, may be considered for	been combined into
See Onl	ine Data	additive risk stratification (27, 95, 98, 99, 103, 114-	prognosis section,
Supplemen		119).	resulting in LOE change
Supplemen	to ri una D.		from A to B-NR.

Biomarkers of myocardial fibrosis (e.g., soluble ST2 receptor, galectin-3, high-sensitivity cardiac troponin, and others) are predictive of hospitalization and death in patients with HF and also are additive to natriuretic peptide biomarker levels in their prognostic value (117, 119-126). A combination of biomarkers may ultimately prove to be more informative than single biomarkers (127).

Colors correspond to COR in Table 1.

*Other biomarkers of injury or fibrosis include soluble ST2 receptor, galectin-3, and high-sensitivity troponin. ACC indicates American College of Cardiology; AHA, American Heart Association; ADHF, acute decompensated heart failure; BNP, B-type natriuretic peptide; COR, Class of Recommendation; ED, emergency department; HF, heart failure; NT-proBNP, N-terminal pro-B-type natriuretic peptide; NYHA, New York Heart Association; and pts, patients.

7. Treatment of Stages A to D

7.3. Stage C

7.3.2. Pharmacological Treatment for Stage C HF With Reduced Ejection Fraction:

Recommendations

(See Figure 2 and Table 3).

7.3.2.10. Renin-Angiotensin System Inhibition With Angiotensin-Converting Enzyme Inhibitor
or Angiotensin Receptor Blocker or ARNI: Recommendations

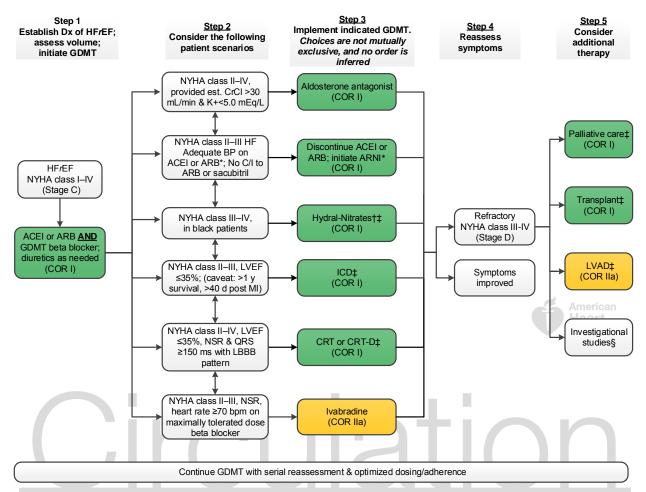
or Angiotensin Receptor Blocker or ARNI: Recommendations Recommendations for Renin-Angiotensin System Inhibition With ACE Inhibitor or ARB or ARNI			
COR			
CON	LOL	The clinical strategy of inhibition of the renin-	NEW : New clinical
	ACE-I: A	angiotensin system with ACE inhibitors (Level of	trial data prompted
		Evidence: A) (128-133), OR ARBs (Level of	clarification and
		Evidence: A) (134-137), OR ARNI (Level of	important updates.
Ι	ARB: A	<i>Evidence: B-R</i>) (138) in conjunction with evidence-	important apaatos.
-		based beta blockers (9, 139, 140), and aldosterone	
		antagonists in selected patients (141, 142), is	
	ARNI: B-R	recommended for patients with chronic HFrEF to	
		reduce morbidity and mortality.	
		Angiotensin-converting enzyme (ACE) inhibitors reduce	morbidity and
		mortality in heart failure with reduced ejection fraction (I	
		controlled trials (RCTs) clearly establish the benefits of A	,
		patients with mild, moderate, or severe symptoms of HF	
		without coronary artery disease (128-133). ACE inhibitor	· · · · · · · · · · · · · · · · · · ·
		angioedema and should be given with caution to patients	n near i
		blood pressures, renal insufficiency, or elevated serum po	•
		inhibitors also inhibit kininase and increase levels of brac	lykinin, which can
		induce cough but also may contribute to their beneficial effect through	
		vasodilation.	
		Angiotensin receptor blockers (ARBs) were develope	ed with the rationale
		that angiotensin II production continues in the presence of ACE inhibition,	
		driven through alternative enzyme pathways. ARBs do not	ot inhibit kininase and
		are associated with a much lower incidence of cough and	angioedema than ACE
See O	nline Data	inhibitors; but like ACE inhibitors, ARBs should be given	n with caution to
* *	ments 1, 2,	patients with low systemic blood pressure, renal insufficient	ency, or elevated
1	8-20.	serum potassium. Long-term therapy with ARBs produces hemodynamic,	
	neurohormonal, and clinical effects consistent with those expected after		-
	interference with the renin-angiotensin system and have been shown in RCTs		
		(134-137) to reduce morbidity and mortality, especially in	n ACE inhibitor–
		intolerant patients.	
		In ARNI, an ARB is combined with an inhibitor of no	1 5 7 5
		that degrades natriuretic peptides, bradykinin, adrenomedullin, and other	
		vasoactive peptides. In an RCT that compared the first approved ARNI,	
		valsartan/sacubitril, with enalapril in symptomatic patients with $HFrEF$	
		tolerating an adequate dose of either ACE inhibitor or AF	*
		the composite endpoint of cardiovascular death or HF hor significantly, by 20% (128). The horafit was seen to a significantly	1
		significantly, by 20% (138). The benefit was seen to a sir	
		death and HF hospitalization and was consistent across su ARNI is associated with the risk of hypotension and rena	• •
		may lead to angioedema, as well.	i mournerency and
	may reau to angioeuenna, as wen.		

		The use of ACE inhibitors is beneficial for	2013 recommendation	
			repeated for clarity in	
Ι	ACE-I: A		this section.	
		(128-133, 143).		
		ACE inhibitors have been shown in large RCTs to reduc	e morbidity and	
		mortality in patients with HFrEF with mild, moderate, or	5	
			· .	
		HF, with or without coronary artery disease (128-133).		
		are no differences among available ACE inhibitors in their effects on symptoms		
		or survival (143). ACE inhibitors should be started at low doses and titrated		
		upward to doses shown to reduce the risk of cardiovascular events in clinical		
		trials. ACE inhibitors can produce angioedema and shou	e e	
		caution to patients with low systemic blood pressures, re	•	
		elevated serum potassium (>5.0 mEq/L). Angioedema o		
	line Data	patients who take an ACE inhibitor, but it occurs more f	· ·	
Supple	ment 18.	women (144). Patients should not be given ACE inhibit		
		or plan to become pregnant. ACE inhibitors also inhibit		
		levels of bradykinin, which can induce cough in up to 20		
		may contribute to beneficial vasodilation. If maximal do	oses are not tolerated,	
		intermediate doses should be tried; abrupt withdrawal or	f ACE inhibition can	
		lead to clinical deterioration and should be avoided.		
		Although the use of an ARNI in lieu of an ACE inhibitor for HFrEF has		
		been found to be superior, for those patients for whom A	RNI is not appropriate,	
		continued use of an ACE inhibitor for all classes of HFr	EF remains strongly	
		advised.		
		The use of ARBs to reduce morbidity and mortality	2013	
		is recommended in patients with prior or current	recommendation	
Ι	ARB: A	symptoms of chronic HFrEF who are intolerant to	repeated for clarity	
		ACE inhibitors because of cough or angioedema	in this section.	
		(134-137, 145, 146).		
		ARBs have been shown to reduce mortality and HF hos	pitalizations in patients	
		with HFrEF in large RCTs (134-137). Long-term therap		
		with HFrEF produces hemodynamic, neurohormonal, and clinical effects		
		consistent with those expected after interference with the renin-angiotensin		
		system (145, 146). Unlike ACE inhibitors, ARBs do not inhibit kininase and are		
		associated with a much lower incidence of cough and angioedema, although		
See Online Data		kininase inhibition by ACE inhibitors may produce beneficial vasodilatory		
Supplem	ents 2 and	effects.		
19.		Patients intolerant to ACE inhibitors because of cough or angioedema		
		should be started on ARBs; patients already tolerating A	RBs for other	
		indications may be continued on ARBs if they subseque	ntly develop HF. ARBs	
		should be started at low doses and titrated upward, with an attempt to use doses		
		shown to reduce the risk of cardiovascular events in clir	ical trials. ARBs should	
		be given with caution to patients with low systemic bloc	od pressure, renal	
		insufficiency, or elevated serum potassium (>5.0 mEq/L	2). Although ARBs are	

I ARNI- R-R		alternatives for patients with ACE inhibitor-induced angioedema, caution is advised because some patients have also developed angioedema with ARBs. Head-to-head comparisons of an ARB versus ARNI for HF do not exist. For those patients for whom an ACE inhibitor or ARNI is inappropriate, use of an ARB remains advised.In patients with chronic symptomatic HFrEF NYHA class II or III who tolerate an ACE inhibitorNEW: New clinical trial data necessitated		
		or ARB, replacement by an ARNI is recommended to further reduce morbidity and mortality (138).	this recommendation.	
I ARNI: B-R		Benefits of ACE inhibitors with regard to decreasing HF hospitalizations, and mortality rate have been shown comacross the clinical spectrum, from asymptomatic to sever Similar benefits have been shown for ARBs in population moderate HF who are unable to tolerate ACE inhibitors. to-moderate HF (characterized by either 1) mildly elevated levels, BNP [B-type natriuretic peptide] >150 pg/mL or N terminal pro-B-type natriuretic peptide] ≥ 600 pg/mL; or N terminal pro-B-type natriuretic peptide] ≥ 600 pg/mL; or N terminal pro-B-type natriuretic both a target dose of edaily) and then subsequently an ARNI (valsartan/sacubitwith the ARB component equivalent to valsartan 160 mg mortality were significantly decreased with the valsartancompared with enalapril. The target dose of the ACE inhibitors or ARBs. Hoff-target effects may be complex with inhibition of the r which has multiple biological targets. Use of an ARNI is hypotension and a low-frequency incidence of angioedem initiation about the optimal titration and tolerability of with regard to blood pressure, adjustment of concomitant the rare complication of angioedema (14).	sistently for patients ely symptomatic HF. In patients with mild- ed natriuretic peptide NT-proBNP [N- 2) BNP \geq 100 pg/mL or he preceding 12 malapril (10 mg twice ril; 200 mg twice daily,), hospitalizations and /sacubitril compound ibitor was consistent ark clinical trials (129). hatic HFrEF and is IF effects and potential heprilysin enzyme, associated with ma. To facilitate a 3 doses that include a bed in the trial was ovide further CARNI, particularly t HF medications, and	
III: Harm	B-R	ARNI should not be administered concomitantly with ACE inhibitors or within 36 hours of the last dose of an ACE inhibitor (148, 149).	NEW: Available evidence demonstrates a potential signal of harm for a concomitant use of ACE inhibitors and ARNI.	

See Online Data Supplement 3.	Oral neprilysin inhibitors, used in combination with ACE inhibitors can lead to angioedema and concomitant use is contraindicated and should be avoided. A medication that represented both a neprilysin inhibitor and an ACE inhibitor, omapatrilat, was studied in both hypertension and HF, but its development was 		
III: Harm C-EO	-		
N/A	Omapatrilat, a neprilysin inhibitor (as well as an ACE inhaminopeptidase P inhibitor), was associated with a higher angioedema than that seen with enalapril in an RCT of patrix (148). In a very large RCT of hypertensive patients, omagwith a 3-fold increased risk of angioedema as compared version Blacks and smokers were particularly at risk. The high in ultimately led to cessation of the clinical development of 152). In light of these observations, angioedema was an ethe first large trial assessing ARNI therapy in patients with and then in the large trial that demonstrated clinical benefits HFrEF (138). ARNI therapy should not be administered thistory of angioedema.	r frequency of atients with HF r EF patrilat was associated with enalapril (149). acidence of angioedema comapatrilat (151) exclusion criterion in on th hypertension (153) fit of ARNI therapy in in patients with a	
7.3.2.11. Ivabradine: Recommendation			

7.3.2.11. Ivabradine: Recommendation


Recommendation for Ivabradine				
COR	LOE	Recommendation	Comment/Rationale	
		Ivabradine can be beneficial to reduce HF	NEW : New clinical trial	
		hospitalization for patients with symptomatic	data.	
		(NYHA class II-III) stable chronic HFrEF		
Ha	B-R	(LVEF ≤35%) who are receiving GDEM*,		
		including a beta blocker at maximum tolerated		
		dose, and who are in sinus rhythm with a heart		
		rate of 70 bpm or greater at rest (154-157).		
		Ivabradine is a new therapeutic agent that selectively inhibits the I_f current in		
		the sinoatrial node, providing heart rate reduction. One RCT demonstrated the		
		efficacy of ivabradine in reducing the composite endpoint of cardiovascular		
See Onli	ine Data	death or HF hospitalization (155). The benefit of ivabradine was driven by a		
Supplei	ment 4.	reduction in HF hospitalization. The study included patients with HFrEF		
		(NYHA class II-IV, albeit with only a modest representation of NYHA class IV		
		HF) and left ventricular ejection fraction (LVEF) \leq 35%, in sinus rhythm with a		
		resting heart rate of \geq 70 beats per minute. Patients enrolled included a small		
		number with paroxysmal atrial fibrillation (<40% of	the time) but otherwise in	

sinus rhythm and a small number experiencing ventricular pacing but with a
predominant sinus rhythm. Those with a myocardial infarction within the
preceding 2 months were excluded. Patients enrolled had been hospitalized for
HF in the preceding 12 months and were on stable GDEM* for 4 weeks before
initiation of ivabradine therapy. The target of ivabradine is heart rate slowing
(the presumed benefit of action), but only 25% of patients studied were on
optimal doses of beta-blocker therapy (9, 139, 140, 155). Given the well-proven
mortality benefits of beta-blocker therapy, it is important to initiate and up
titrate these agents to target doses, as tolerated, before assessing the resting
heart rate for consideration of ivabradine initiation (155).

*In other parts of the document, the term "GDMT" has been used to denote guideline-directed management and therapy. In this recommendation, however, the term "GDEM" has been used to denote this same concept in order to reflect the original wording of the recommendation that initially appeared in the "2016 ACC/AHA/HFSA Focused Update on New Pharmacological Therapy for Heart Failure: An Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure" (10).

Circulation

Figure 2. Treatment of HFrEF Stage C and D

Colors correspond to COR in Table 1. For all medical therapies, dosing should be optimized and serial assessment exercised.

*See text for important treatment directions.

[†]Hydral-Nitrates green box: The combination of ISDN/HYD with ARNI has not been robustly tested. BP response should be carefully monitored.

\$See 2013 HF guideline (9).

§Participation in investigational studies is also appropriate for stage C, NYHA class II and III HF.

ACEI indicates angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor-blocker; ARNI, angiotensin receptor-neprilysin inhibitor; BP, blood pressure; bpm, beats per minute; C/I, contraindication; COR, Class of Recommendation; CrCl, creatinine clearance; CRT-D, cardiac resynchronization therapy–device; Dx, diagnosis; GDMT, guideline-directed management and therapy; HF, heart failure; HF*r*EF, heart failure with reduced ejection fraction; ICD, implantable cardioverter-defibrillator; ISDN/HYD, isosorbide dinitrate hydral-nitrates; K+, potassium; LBBB, left bundle-branch block; LVAD, left ventricular assist device; LVEF, left ventricular ejection fraction; MI, myocardial infarction; NSR, normal sinus rhythm; and NYHA, New York Heart Association.

Drug	Initial Daily Dose(s)	Maximum Doses(s)	Mean Doses Achieved in Clinical Trials	References
ACE inhibitors				
Captopril	6.25 mg TID	50 mg TID	122.7 mg QD	(158)
Enalapril	2.5 mg BID	10–20 mg BID	16.6 mg QD	(129)
Fosinopril	5–10 mg QD	40 mg QD	N/A	
Lisinopril	2.5–5 mg QD	20–40 mg QD	32.5–35.0 mg QD	(130)
Perindopril	2 mg QD	8–16 mg QD	N/A	
Quinapril	5 mg BID	20 mg BID	N/A	
Ramipril	1.25–2.5 mg QD	10 mg QD	N/A	
Trandolapril	1 mg QD	4 mg QD	N/A	
ARBs				
Candesartan	4–8 mg QD	32 mg QD	24 mg QD	(137)
Losartan	25–50 mg QD	50–150 mg QD	129 mg QD	(136)
Valsartan	20–40 mg BID	160 mg BID	254 mg QD	(134)
ARNI				
Sacubitril/ valsartan	49/51 mg BID (sacubitril/valsartan) (therapy may be initiated at 24/26 mg BID)	97/103 mg BID (sacubitril/valsartan)	375 mg QD; target dose: 24/26 mg, 49/51 mg OR 97/103 mg BID	He(138) Association
If channel inhibit				
Ivabradine	5 mg BID	7.5 mg BID	6.4 mg BID (at 28 d) 6.5 mg BID (at 1 y)	(155-157)
Aldosterone antag	gonists			
Spironolactone	12.5–25 mg QD	25 mg QD or BID	26 mg QD	(142)
Eplerenone	25 mg QD	50 mg QD	42.6 mg QD	(159)
Beta blockers				
Bisoprolol	1.25 mg QD	10 mg QD	8.6 mg QD	(160)
Carvedilol	3.125 mg BID	50 mg BID	37 mg QD	(161)
Carvedilol CR	10 mg QD	80 mg QD	N/A	
Metoprolol succinate extended release (metoprolol CR/XL)	12.5–25 mg QD	200 mg QD	159 mg QD	(139)
Isosorbide dinitra	te and hydralazine			
Fixed-dose combination	20 mg isosorbide dinitrate / 37.5 mg hydralazine TID	40 mg isosorbide dinitrate / 75 mg hydralazine TID	90 mg isosorbide dinitrate / ~175 mg hydralazine QD	(162)
Isosorbide dinitrate and hydralazine	20–30 mg isosorbide dinitrate / 25–50 mg hydralazine TID or QD	40 mg isosorbide dinitrate TID with 100 mg hydralazine TID	N/A	(163)

Table 3. Drugs Commonly Used for HFrEF (Stage C HF)

 TID or QD

 Modified (Table 15) from the 2013 HF guideline (9).

L

ACE indicates angiotensin-converting enzyme; ARB, angiotensin receptor blocker; ARNI, angiotensin receptorneprilysin inhibitor; BID, twice daily; CR, controlled release; CR/XL, controlled release/extended release; HF, heart failure; HF*r*EF, heart failure with reduced ejection fraction; N/A, not applicable; QD, once daily; and TID, 3 times daily.

Recommendations for Stage C HFpEF			
COR	LOE	Recommendations	Comment/Rationale
I	В	Systolic and diastolic blood pressure should be controlled in patients with HFpEF in accordance with published clinical practice guidelines to prevent morbidity (164, 165).	2013 recommendation remains current.
I	С	Diuretics should be used for relief of symptoms due to volume overload in patients with HF <i>p</i> EF.	2013 recommendation remains current.
IIa	С	Coronary revascularization is reasonable in patients with CAD in whom symptoms (angina) or demonstrable myocardial ischemia is judged to be having an adverse effect on symptomatic HF <i>p</i> EF despite GDMT.	2013 recommendation remains current.
IIa	С	Management of AF according to published clinical practice guidelines in patients with HF <i>p</i> EF is reasonable to improve symptomatic HF.	2013 recommendation remains current (Section 9.1 in the 2013 HF guideline).
Па	С	The use of beta-blocking agents, ACE inhibitors, and ARBs in patients with hypertension is reasonable to control blood pressure in patients with HFpEF.	2013 recommendation remains current.
IIb	B-R	In appropriately selected patients with HFpEF (with EF \geq 45%, elevated BNP levels or HF admission	NEW: Current recommendation reflects
See Onli Suppler	ment C.	within 1 year, estimated glomerular filtration rate >30 mL/min, creatinine <2.5 mg/dL, potassium <5.0 mEq/L), aldosterone receptor antagonists might be considered to decrease hospitalizations (83, 166, 167).	new RCT data.

7.3.3.	Pharmacological	Treatment for Stage (C HFpEF: Recommendations

Mechanistic studies have suggested that mineralocorticoid receptor antagonists can improve measures of diastolic function in patients with HFpEF, possibly by a similar effect on remodeling (83, 168).

The TOPCAT (Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist) trial (166) investigated the effects of spironolactone on a combined endpoint of death, aborted cardiac death, and HF hospitalization in patients with HFpEF. A small reduction (HR=0.89) in this composite endpoint did not reach statistical significance, although HF hospitalization was reduced (HR=0.83); known side effects of hyperkalemia and rising creatinine were seen more commonly in the treatment group (166). An unusual amount of regional variation was seen in this trial, prompting a post-hoc analysis (167) that showed that rates of the primary endpoint were 4-fold lower in Russia/Georgia than in North America and South America (the Americas). Rates in the Americas were comparable to those in other HFpEF trials (169, 170). The post-hoc analysis showed efficacy in the Americas (HR=0.83) but not in Russia/Georgia (HR=1.10). Moreover, a sample of the Russia/Georgia population, despite having been in the active treatment arm, had nondetectable levels of

the metabolite of spironolactone. These post-hoc analyses have significant limitations, but they suggest that in appropriately selected patients with symptomatic HF*p*EF (with ejection fraction [EF] \geq 45%, elevated BNP level or HF admission within 1 year, estimated glomerular filtration rate >30 mL/min creatinine <2.5 mg/dL, and potassium <5.0 mEq/L), particularly in those with elevated BNP levels, use of spironolactone might be considered with close monitoring of potassium and renal function. Confirmatory studies are required.

With regard to the use of mineralocorticoid receptor antagonists, creatinine should be <2.5 mg/dL in men or <2.0 mg/dL in women (or estimated glomerular filtration rate >30 mL/min) and potassium should be <5.0 mEq/L. Careful monitoring of potassium, renal function, and diuretic dosing represents best practices at initiation and during follow-up thereafter to minimize risk of hyperkalemia and worsening renal function.

_	2		
IIb	В	The use of ARBs might be considered to decrease hospitalizations for patients with HF <i>p</i> EF (169).	2013 recommendation remains current.
III: No Benefit	B-R	Routine use of nitrates or phosphodiesterase-5 inhibitors to increase activity or QoL in patients	NEW : Current recommendation reflects
See Online Data Supplement C.		with HFpEF is ineffective (171, 172).	new data from RCTs.

Nitrate therapy can reduce pulmonary congestion and improve exercise tolerance in patients with HF*r*EF. However, the NEAT-HF*p*EF (Nitrate's Effect on Activity Tolerance in Heart Failure With Preserved Ejection Fraction) trial (171) randomized 110 patients with EF \geq 50% on stable HF therapy, not including nitrates, and with activity limited by dyspnea, fatigue, or chest pain, to either isosorbide mononitrate or placebo and found no beneficial effects on activity levels, QoL, exercise tolerance, or NT-proBNP levels. On the basis of this trial, routine use of nitrates in patients with HF*p*EF is not recommended. This recommendation does not apply to patients with HF*p*EF and symptomatic CAD for whom nitrates may provide symptomatic relief. Phosphodiesterase-5 inhibition augments the nitric oxide system by upregulating cGMP activity. The RELAX (Phosphodiesterase-5 Inhibition to Improve Clinical Status and Exercise Capacity in Heart Failure with Preserved Ejection Fraction) trial (172) randomized 216 patients with EF \geq 50% on stable HF therapy and with reduced exercise tolerance (peak observed VO₂ <60% of predicted) to phosphodiesterase-5 inhibition with sildenafil or placebo. This study did not show improvement in oxygen consumption or exercise tolerance.

III: No	C	Routine use of nutritional supplements is not	2013 recommendation
Benefit	C	recommended for patients with HFpEF.	remains current.

9. Important Comorbidities in HF

9.2. Anemia: Recommendations

Recommendations for Anemia				
COR	LOE	Recommendations	Comment/Rationale	
IIb	B-R	In patients with NYHA class II and III HF and iron	NEW : New evidence	
		deficiency (ferritin <100 ng/mL or 100 to 300 ng/mL	consistent with	
See Onli	ne Data	if transferrin saturation is <20%), intravenous iron	therapeutic benefit.	
Supplement D.		replacement might be reasonable to improve	_	
Supplement D.		functional status and QoL(173, 174).		
Routine baseline assessment of all patients with HF includes an evaluation for anemia in addition to other				
baseline laboratory measurements. Anemia is independently associated with HF disease severity, and iron				

deficiency appears to be uniquely associated with reduced exercise capacity. When iron deficiency is diagnosed and after full evaluation for cause, intravenous repletion of iron, especially in the setting of concomitant hepcidin deficiency in HF, may improve exercise capacity and QoL. Studies examining correction of iron deficiency in HF have demonstrated improvement in surrogate endpoints, such as QoL, NT-proBNP, and LVEF; however, controlled trials have been underpowered to detect reductions in hard clinical endpoints. The FAIR-HF (Ferric Carboxymaltose Assessment in Patients With Iron Deficiency and Chronic Heart Failure) trial (173) demonstrated improvements in NYHA class and functional capacity over a short-term exposure. The CONFIRM-HF (Ferric Carboxymaltose Evaluation on Performance in Patients With Iron Deficiency in Combination with Chronic Heart Failure) trial (174) included a larger cohort of patients (n=304) and demonstrated improvements in 6-minute walk test. A meta-analysis of 5 prospective controlled studies (631 patients) evaluated the effect of intravenous iron on deaths, hospitalizations, and other events in patients with HF and iron deficiency (175). Patients receiving intravenous iron experienced limited but statistically significant improvements in functional capacity and LVEF but no reduction in mortality rate. The FAIR-HF 2 trial is underway to further address the potential benefit of intravenous iron in HF associated with iron deficiency. Therefore, a strong recommendation for intravenous iron repletion must await the results of an appropriately powered trial on morbidity and mortality. There is an uncertain evidence base for oral iron repletion in the setting of anemia associated with HF.

III: No Benefit	B-R	In patients with HF and anemia, erythropoietin- stimulating agents should not be used to improve	NEW : Current recommendation reflects
See Online Data Supplement D.		morbidity and mortality (176).	new evidence demonstrating absence of therapeutic benefit.

Small studies evaluating the treatment of anemia in patients with HF have suggested a trend toward improvement in functional capacity and reduction in hospitalization with the use of erythropoietin-stimulating agents (177-182), but results have varied (183) and have been limited because of sample size. Although a meta-analysis of 11 RCTs (n=794) comparing erythropoietin-stimulating agents to control in patients with HF demonstrated significant improvements in 6-minute walk, exercise duration, peak VO₂, NYHA functional status, EF, BNP, HFrelated hospitalizations, and QoL (184), in the STAMINA-HeFT (Study of Anemia in Heart Failure) trial (183), darbepoetin alfa was not associated with significant clinical benefits. In the largest RCT to date (n=2,278), correction of anemia with darbopoetin alfa did not result in benefit and resulted in a significant increase in the risk of thromboembolic events and a nonsignificant increase in fatal and nonfatal strokes, supporting findings from other trials (176, 185-188). In summary, the strongest evidence on erythropoietin-stimulating agent therapy in HF suggests lack of benefit and increased adverse events. Therefore, erythropoietin-stimulating agent therapy cannot be recommended in patients with HF and anemia.

9.5. Hypertension (New Section)

9.5.1. Treating Hypertension to Reduce the Incidence of HF: Recommendation

Recommendation for Prevention				
COR	LOE	Recommendations	Comment/Rationale	
I	n n	In patients at increased risk, stage A HF, the optimal	NEW : Recommendation	
	B-R	blood pressure in those with hypertension should be	reflects new RCT data.	

See Online Data Supplements E and F.	less than 130/80 mm Hg (189-193).			
A large RCT demonstrated that in those with increased cardiovascular risk (defined as age >75 years, established				
vascular disease, chronic re	enal disease, or a Framingham Risk Score >15%), control	of blood pressure to a goal		
systolic pressure of <120 n	nm Hg, as determined by blood pressure assessment as pe	r research protocol, was		
associated with a significant	nt reduction in the incidence of HF (191) and an overall d	ecrease in cardiovascular		
death. Blood pressure mea	surements as generally taken in the office setting are typic	cally 5 to 10 mm Hg higher		
than research measurements; thus, the goal of <130/80 mm Hg is an approximation of the target blood pressure				
in conventional practice. T	argeting a significant reduction in systolic blood pressure	e in those at increased risk		
for cardiovascular disease	is a novel strategy to prevent HF.			

9.5.2. Treating Hypertension in Stage C HFrEF: Recommendation

	ation for Hy	pertension in Stage C HFrEF	
COR	LOE	Recommendation	Comment/Rationale
		Patients with HFrEF and hypertension should be	NEW : Recommendation
I	C-EO	prescribed GDMT titrated to attain systolic blood	has been adapted from
		pressure less than 130 mm Hg (191).	recent clinical trial data
See Online Data			but not specifically tested
Supplements E and F.			per se in a randomized
			trial of patients with HF.
Clinical trials evaluating goal blood pressure reduction and optimal blood pressure-lowering agents in the setting			
of HFrEF and concomitant hypertension have not been done. However, it is apparent that in those patients at			
higher risk blood pressure lowering is associated with forver adverse cardiovescular events CDMT for HEREE			

higher risk, blood pressure lowering is associated with fewer adverse cardiovascular events. GDMT for HFrEF with agents known to lower blood pressure should consider a goal blood pressure reduction consistent with a threshold now associated with improved clinical outcomes but not yet proven by RCTs in a population with HF.

9.5.3. Treating Hypertension in Stage C HFpEF: Recommendation

Recommendation for Hypertension in Stage C HFpEF				
COR	LOE	Recommendation	Comment/Rationale	
I	C-LD	Patients with HFpEF and persistent hypertension after management of volume overload should be	NEW : New target goal blood pressure based on	
See Online Data Supplements E and F.		prescribed GDMT titrated to attain systolic blood pressure less than 130 mm Hg (167, 169, 170, 194- 199).	updated interpretation of recent clinical trial data.	

The use of nitrates in the setting of HF*p*EF is associated with a signal of harm and, in most situations, should be avoided. For many common antihypertensive agents, including alpha blockers, beta blockers, and calcium channel blockers, there are limited data to guide the choice of antihypertensive therapy in the setting of HF*p*EF (172). Nevertheless, RAAS inhibition with ACE inhibitor, ARB (especially mineralocorticoid receptor antagonists), and possibly ARNI would represent the preferred choice. A shared decision-making discussion with the patient influenced by physician judgment should drive the ultimate choice of antihypertensive agents.

9.6. Sleep Disordered Breathing: Recommendations

(Moved from Section 7.3.1.4, Treatment of Sleep Disorders in the 2013 HF guideline.)

COR			
	LOE	Recommendations	Comment/Rationale
IIa	C-LD	In patients with NYHA class II–IV HF and suspicion of sleep disordered breathing or excessive daytime	NEW : Recommendation reflects clinical necessity
See Onli		sleepiness, a formal sleep assessment is reasonable	to distinguish obstructive
Supplement G.		(200, 201).	versus central sleep apnea.
•		on in patients with HF. A study of adults with chronic HF tr	
-		ad either central or obstructive sleep apnea (202). It is clini	
-		ep apnea from central sleep apnea, given the different respo	-
servo-ventila	tion for centra	al sleep apnea is associated with harm (203). Continuous po	ositive airway pressure
(CPAP) for o nocturnal oxy		ep apnea improves sleep quality, reduces the apnea-hypopr 0, 201).	nea index, and improves
		In patients with cardiovascular disease and	NEW : New data
IIb	B-R	obstructive sleep apnea, CPAP may be reasonable to	demonstrate the limited
See Onli	na Data	improve sleep quality and daytime sleepiness (204).	scope of benefit expected
Supplen			from CPAP for
**			obstructive sleep apnea.
•	• •	a, a trial evaluated the impact of CPAP with usual therapy $\frac{1}{2}$	10
•		lar events, including HF (204). In this RCT of $>2,700$ patie	-
		ar events at a mean follow-up of 3.7 years for CPAP plus us	-
	· · · · · · · · · · · · · · · · · · ·	nents in sleep quality were noteworthy and represented the	
		(204). However, in patients with atrial fibrillation (AF) (a f	
		for obstructive sleep apnea was helpful. In a trial of $10,13$.	
		tients on CPAP treatment were less likely to progress to m	ore permanent forms of AF
	ients without		
man were pat	ionto without	CPAP (205).	
		In patients with NYHA class II–IV HFrEF and	NEW : New data
III: Harm	B-R	In patients with NYHA class II–IV HFrEF and central sleep apnea, adaptive servo-ventilation	demonstrate a signal of
	B-R	In patients with NYHA class II–IV HFrEF and	demonstrate a signal of harm when adaptive
III: Harm	B-R ine Data	In patients with NYHA class II–IV HFrEF and central sleep apnea, adaptive servo-ventilation	demonstrate a signal of
III: Harm See Onli Supplen	B-R ine Data nent G.	In patients with NYHA class II–IV HFrEF and central sleep apnea, adaptive servo-ventilation	demonstrate a signal of harm when adaptive servo-ventilation is used for central sleep apnea.
III: Harm See Onli Supplen Mortality rate	B-R ine Data nent G. e (all cause ar	In patients with NYHA class II–IV HFrEF and central sleep apnea, adaptive servo-ventilation causes harm (203).	demonstrate a signal of harm when adaptive servo-ventilation is used for central sleep apnea. on plus GDMT than with
III: Harm See Onli Supplen Mortality rate GDMT alone	B-R ine Data nent G. e (all cause ar e in a single R	In patients with NYHA class II–IV HFrEF and central sleep apnea, adaptive servo-ventilation causes harm (203). d cardiovascular) was higher with adaptive servo-ventilation	demonstrate a signal of harm when adaptive servo-ventilation is used for central sleep apnea. on plus GDMT than with urs/night, 7 days/week) to
III: Harm See Onli Supplen Mortality rate GDMT alone GDMT in pat	B-R ine Data nent G. e (all cause ar e in a single R tients with HI	In patients with NYHA class II–IV HFrEF and central sleep apnea, adaptive servo-ventilation causes harm (203). d cardiovascular) was higher with adaptive servo-ventilation CT to test the addition of adaptive servo-ventilation (≥5 ho	demonstrate a signal of harm when adaptive servo-ventilation is used for central sleep apnea. on plus GDMT than with urs/night, 7 days/week) to seen in another trial, and a

Presidents and Staff

American College of Cardiology

Mary Norine Walsh, MD, FACC, President
Shalom Jacobovitz, Chief Executive Officer
William J. Oetgen, MD, MBA, FACC, Executive Vice President, Science, Education, Quality, and Publishing
Amelia Scholtz, PhD, Publications Manager, Science, Education, Quality, and Publishing

American College of Cardiology/American Heart Association

Katherine Sheehan, PhD, Director of Guideline Strategy and Operations Lisa Bradfield, CAE, Director, Guideline Methodology and Policy Abdul R. Abdullah, MD, Science and Medicine Advisor Morgane Cibotti-Sun, MPH, Project Manager, Clinical Practice Guidelines Sam Shahid, MBBS, MPH, Associate Science and Medicine Advisor

American Heart Association

Steven R. Houser, PhD, FAHA, President Nancy Brown, Chief Executive Officer Rose Marie Robertson, MD, FAHA, Chief Science and Medicine Officer Gayle R. Whitman, PhD, RN, FAHA, FAAN, Senior Vice President, Office of Science Operations Jody Hundley, Production Manager, Scientific Publications, Office of Science Operations

Key Words: AHA Scientific Statements

 heart failure
 focused update
 angiotensin receptor neprilysin inhibitor
 ivabradine
 angiotensin receptor blockers
 angiotensin-converting enzyme
 inhibitors
 beta blockers
 angioedema
 natriuretic peptides
 ferric carboxymaltose
 iron deficiency

 hypertension
 sleep apnea
 natriuretic peptide biomarker

References

1. Committee on Standards for Developing Trustworthy Clinical Practice Guidelines, Institute of Medicine (U.S.). Clinical Practice Guidelines We Can Trust. ed. Washington, DC: Press NA, 2011.

2. Committee on Standards for Systematic Reviews of Comparative Effectiveness Research, Institute of Medicine (U.S.). Finding What Works in Health Care: Standards for Systematic Reviews. ed. Washington, DC: Press NA, 2011.

3. Anderson JL, Heidenreich PA, Barnett PG, et al. ACC/AHA statement on cost/value methodology in clinical practice guidelines and performance measures: a report of the American College of Cardiology/American Heart Association Task Force on Performance Measures and Task Force on Practice Guidelines. Circulation. 2014;129:2329–45.

4. ACCF/AHA Task Force on Practice Guidelines. Methodology Manual and Policies From the ACCF/AHA Task Force on Practice Guidelines. American College of Cardiology and American Heart Association, 2010.

5. Halperin JL, Levine GN, Al-Khatib SM, et al. Further evolution of the ACC/AHA clinical practice guideline recommendation classification system: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2016;133:1426-28.

6. Jacobs AK, Kushner FG, Ettinger SM, et al. ACCF/AHA clinical practice guideline methodology summit report: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;127:268-310.

7. Jacobs AK, Anderson JL, Halperin JL. The evolution and future of ACC/AHA clinical practice guidelines: a 30-year journey: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;130:1208–17.

8. Arnett DK, Goodman RA, Halperin JL, et al. AHA/ACC/HHS strategies to enhance application of clinical practice guidelines in patients with cardiovascular disease and comorbid conditions: from the American Heart Association, American College of Cardiology, and US Department of Health and Human Services. Circulation. 2014;130:1662–7.

9. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;128:e240–327.

10. Yancy CW, Jessup M, Bozkurt B, et al. 2016 ACC/AHA/HFSA focused update on new pharmacological therapy for heart failure: an update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation. 2016;134:e282–293.

11. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016; 37:2129-200.

12. Packer M, McMurray JJ, Desai AS, et al. Angiotensin receptor neprilysin inhibition compared with enalapril on the risk of clinical progression in surviving patients with heart failure. Circulation. 2015; 131:54-61.

13. Zile MR, Claggett BL, Prescott MF, et al. Prognostic Implications of Changes in N-Terminal Pro-B-Type Natriuretic Peptide in Patients With Heart Failure. J Am Coll Cardiol. 2016; 68:2425-36.

14. Solomon SD, Zile M, Pieske B, et al. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet. 2012; 380:1387-95.

15. Richards AM, Doughty R, Nicholls MG, et al. Plasma N-terminal pro-brain natriuretic peptide and adrenomedullin: prognostic utility and prediction of benefit from carvedilol in chronic ischemic left ventricular dysfunction. Australia-New Zealand Heart Failure Group. J Am Coll Cardiol. 2001; 37:1781-7.

16. Tang WH, Girod JP, Lee MJ, et al. Plasma B-type natriuretic peptide levels in ambulatory patients with established chronic symptomatic systolic heart failure. Circulation. 2003; 108:2964-6.

17. Zaphiriou A, Robb S, Murray-Thomas T, et al. The diagnostic accuracy of plasma BNP and NTproBNP in patients referred from primary care with suspected heart failure: results of the UK natriuretic peptide study. Eur. J. Heart Fail. 2005; 7:537-41.

18. Son CS, Kim YN, Kim HS, et al. Decision-making model for early diagnosis of congestive heart failure using rough set and decision tree approaches. J Biomed Inform. 2012; 45:999-1008.

19. Kelder JC, Cramer MJ, Van WJ, et al. The diagnostic value of physical examination and additional testing in primary care patients with suspected heart failure. Circulation. 2011; 124:2865-73.

20. Balion C, Don-Wauchope A, Hill S, et al. Use of Natriuretic Peptide Measurement in the Management of Heart Failure [Internet]. 13(14)-EHC118-EF ed. Rockville, MD: 2013.

21. Booth RA, Hill SA, Don-Wauchope A, et al. Performance of BNP and NT-proBNP for diagnosis of heart failure in primary care patients: a systematic review. Heart Fail Rev. 2014; 19:439-51.

22. Dao Q, Krishnaswamy P, Kazanegra R, et al. Utility of B-type natriuretic peptide in the diagnosis of congestive heart failure in an urgent-care setting. J. Am. Coll. Cardiol. 2001; 37:379-85.

23. Davis M, Espiner E, Richards G, et al. Plasma brain natriuretic peptide in assessment of acute dyspnoea. Lancet. 1994; 343:440-4.

24. Maisel AS, Krishnaswamy P, Nowak RM, et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N. Engl. J. Med. 2002; 347:161-7.

25. Moe GW, Howlett J, Januzzi JL, et al. N-terminal pro-B-type natriuretic peptide testing improves the management of patients with suspected acute heart failure: primary results of the Canadian prospective randomized multicenter IMPROVE-CHF study. Circulation. 2007; 115:3103-10.

26. Mueller C, Scholer A, Laule-Kilian K, et al. Use of B-type natriuretic peptide in the evaluation and management of acute dyspnea. N. Engl. J. Med. 2004; 350:647-54.

27. van Kimmenade RR, Pinto YM, Bayes-Genis A, et al. Usefulness of intermediate amino-terminal pro-brain natriuretic peptide concentrations for diagnosis and prognosis of acute heart failure. Am. J. Cardiol. 2006; 98:386-90.

28. Januzzi JL Jr, Chen-Tournoux AA, Moe G. Amino-terminal pro-B-type natriuretic peptide testing for the diagnosis or exclusion of heart failure in patients with acute symptoms. Am J Cardiol. 2008; 101:29-38.

29. Santaguida PL, Don-Wauchope AC, Ali U, et al. Incremental value of natriuretic peptide measurement in acute decompensated heart failure (ADHF): a systematic review. Heart Fail Rev. 2014; 19:507-19.

30. Hill SA, Booth RA, Santaguida PL, et al. Use of BNP and NT-proBNP for the diagnosis of heart failure in the emergency department: a systematic review of the evidence. Heart Fail Rev. 2014; 19:421-38.

31. Costello-Boerrigter LC, Boerrigter G, Redfield MM, et al. Amino-terminal pro-B-type natriuretic peptide and B-type natriuretic peptide in the general community: determinants and detection of left ventricular dysfunction. J Am Coll Cardiol. 2006; 47:345-53.

32. de Lemos JA, McGuire DK, Khera A, et al. Screening the population for left ventricular hypertrophy and left ventricular systolic dysfunction using natriuretic peptides: results from the Dallas Heart Study. Am. Heart J. 2009; 157:746-53.

33. Goetze JP, Mogelvang R, Maage L, et al. Plasma pro-B-type natriuretic peptide in the general population: screening for left ventricular hypertrophy and systolic dysfunction. Eur Heart J. 2006; 27:3004-10.

34. Ng LL, Loke IW, Davies JE, et al. Community screening for left ventricular systolic dysfunction using plasma and urinary natriuretic peptides. J Am Coll Cardiol. 2005; 45:1043-50.

35. Ho JE, Liu C, Lyass A, et al. Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J. Am. Coll. Cardiol. 2012; 60:1249-56.

36. Wang TJ, Wollert KC, Larson MG, et al. Prognostic utility of novel biomarkers of cardiovascular stress: the Framingham Heart Study. Circulation. 2012; 126:1596-604.

37. Xanthakis V, Larson MG, Wollert KC, et al. Association of novel biomarkers of cardiovascular stress with left ventricular hypertrophy and dysfunction: implications for screening. J. Am. Heart Assoc. 2013; 2:e000399.

38. Anwaruddin S, Lloyd-Jones DM, Baggish A, et al. Renal function, congestive heart failure, and aminoterminal pro-brain natriuretic peptide measurement: results from the ProBNP Investigation of Dyspnea in the Emergency Department (PRIDE) Study. J Am Coll Cardiol. 2006; 47:91-7.

39. Redfield MM, Rodeheffer RJ, Jacobsen SJ, et al. Plasma brain natriuretic peptide concentration: impact of age and gender. J Am Coll Cardiol. 2002; 40:976-82.

40. Wang TJ, Larson MG, Levy D, et al. Impact of age and sex on plasma natriuretic peptide levels in healthy adults. Am J Cardiol. 2002; 90:254-8.

41. Chang AY, Abdullah SM, Jain T, et al. Associations among androgens, estrogens, and natriuretic peptides in young women: observations from the Dallas Heart Study. J Am Coll Cardiol. 2007; 49:109-16.

42. Clerico A, Giannoni A, Vittorini S, et al. The paradox of low BNP levels in obesity. Heart Fail Rev. 2012; 17:81-96.

43. De Vecchis R, Esposito C, Di Biase G, et al. B-type natriuretic peptide-guided versus symptom-guided therapy in outpatients with chronic heart failure: a systematic review with meta-analysis. J Cardiovasc Med (Hagerstown). 2014; 15:122-34.

44. Felker GM, Hasselblad V, Hernandez AF, et al. Biomarker-guided therapy in chronic heart failure: a metaanalysis of randomized controlled trials. Am. Heart J. 2009; 158:422-30. 45. Li P, Luo Y and Chen YM. B-type natriuretic peptide-guided chronic heart failure therapy: a meta-analysis of 11 randomised controlled trials. Heart Lung Circ. 2013; 22:852-60.

46. Porapakkham P, Porapakkham P, Zimmet H, et al. B-type natriuretic peptide-guided heart failure therapy: a meta-analysis. Arch. Intern. Med. 2010; 170:507-14.

47. Savarese G, Trimarco B, Dellegrottaglie S, et al. Natriuretic peptide-guided therapy in chronic heart failure: a meta-analysis of 2,686 patients in 12 randomized trials. PLoS One. 2013; 8:e58287.

48. Troughton RW, Frampton CM, Brunner-La Rocca HP, et al. Effect of B-type natriuretic peptide-guided treatment of chronic heart failure on total mortality and hospitalization: an individual patient meta-analysis. Eur. Heart J. 2014; 35:1559-67.

49. Xin W, Lin Z, Mi S. Does B-type natriuretic peptide-guided therapy improve outcomes in patients with chronic heart failure? A systematic review and meta-analysis of randomized controlled trials. Heart Fail Rev. 2015; 20:69-80.

50. Berger R, Moertl D, Peter S, et al. N-terminal pro-B-type natriuretic peptide-guided, intensive patient management in addition to multidisciplinary care in chronic heart failure: a 3-arm, prospective, randomized pilot study. J Am Coll Cardiol. 2010; 55:645-53.

51. Eurlings LW, van Pol PE, Kok WE, et al. Management of chronic heart failure guided by individual N-terminal pro-B-type natriuretic peptide targets: results of the PRIMA (Can PRo-brain-natriuretic peptide guided therapy of chronic heart failure IMprove heart fAilure morbidity and mortality?) study. J. Am. Coll. Cardiol. 2010; 56:2090-100.

52. Gaggin HK, Mohammed AA, Bhardwaj A, et al. Heart failure outcomes and benefits of NT-proBNPguided management in the elderly: results from the prospective, randomized ProBNP outpatient tailored chronic heart failure therapy (PROTECT) study. J. Card Fail. 2012; 18:626-34.

53. Jourdain P, Jondeau G, Funck F, et al. Plasma brain natriuretic peptide-guided therapy to improve outcome in heart failure: the STARS-BNP Multicenter Study. J Am. Coll. Cardiol. 2007; 49:1733-9.

54. Karlstrom P, Alehagen U, Boman K, et al. Brain natriuretic peptide-guided treatment does not improve morbidity and mortality in extensively treated patients with chronic heart failure: responders to treatment have a significantly better outcome. Eur. J. Heart Fail. 2011; 13:1096-103.

55. Lainchbury JG, Troughton RW, Strangman KM, et al. N-terminal pro-B-type natriuretic peptide-guided treatment for chronic heart failure: results from the BATTLESCARRED (NT-proBNP-Assisted Treatment To Lessen Serial Cardiac Readmissions and Death) trial. J Am Coll Cardiol. 2009; 55:53-60.

56. Persson H, Erntell H, Eriksson B, et al. Improved pharmacological therapy of chronic heart failure in primary care: a randomized Study of NT-proBNP Guided Management of Heart Failure--SIGNAL-HF (Swedish Intervention study--Guidelines and NT-proBNP AnaLysis in Heart Failure). Eur. J. Heart Fail. 2010; 12:1300-8.

57. Pfisterer M, Buser P, Rickli H, et al. BNP-guided vs symptom-guided heart failure therapy: the Trial of Intensified vs Standard Medical Therapy in Elderly Patients With Congestive Heart Failure (TIME-CHF) randomized trial. JAMA. 2009; 301:383-92.

58. Shah MR, Califf RM, Nohria A, et al. The STARBRITE trial: a randomized, pilot study of B-type natriuretic peptide-guided therapy in patients with advanced heart failure. J. Card Fail. 2011; 17:613-21.

59. Troughton RW, Frampton CM, Yandle TG, et al. Treatment of heart failure guided by plasma aminoterminal brain natriuretic peptide (N-BNP) concentrations. Lancet. 2000; 355:1126-30.

60. Singer AJ, Birkhahn RH, Guss D, et al. Rapid Emergency Department Heart Failure Outpatients Trial (REDHOT II): a randomized controlled trial of the effect of serial B-type natriuretic peptide testing on patient management. Circ. Heart Fail. 2009; 2:287-93.

61. Stienen S, Salah K, Moons AH, et al. Rationale and design of PRIMA II: A multicenter, randomized clinical trial to study the impact of in-hospital guidance for acute decompensated heart failure treatment by a predefined NT-PRoBNP target on the reduction of readmIssion and Mortality rAtes. Am Heart J. 2014; 168:30-6.

62. Stienen S. PRIMA II: can NT-pro-brain-natriuretic peptide (NT-proBNP) guided therapy during admission for acute heart failure reduce mortality and readmissions?

63. Kociol RD, Pang PS, Gheorghiade M, et al. Troponin elevation in heart failure prevalence, mechanisms, and clinical implications. J Am Coll Cardiol. 2010; 56:1071-8.

64. Amsterdam EA, Wenger NK, Brindis RG, et al. 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;130:e344–426.

65. Masson S, Anand I, Favero C, et al. Serial measurement of cardiac troponin T using a highly sensitive assay in patients with chronic heart failure: data from 2 large randomized clinical trials. Circulation. 2012; 125:280-8.

66. Savarese G, Musella F, D'Amore C, et al. Changes of natriuretic peptides predict hospital admissions in patients with chronic heart failure: a meta-analysis. JACC Heart Fail. 2014; 2:148-58.

67. de Lemos JA. Increasingly sensitive assays for cardiac troponins: a review. JAMA. 2013; 309:2262-9.

68. de Boer RA, Daniels LB, Maisel AS, et al. State of the Art: Newer biomarkers in heart failure. Eur. J. Heart Fail. 2015; 17:559-69.

69. Gopal DM, Sam F. New and emerging biomarkers in left ventricular systolic dysfunction--insight into dilated cardiomyopathy. J. Cardiovasc. Transl. Res. 2013; 6:516-27.

70. O'Meara E, de DS, Rouleau JL, et al. Circulating biomarkers in patients with heart failure and preserved ejection fraction. Curr. Heart Fail. Rep. 2013; 10:350-8.

71. Karayannis G, Triposkiadis F, Skoularigis J, et al. The emerging role of Galectin-3 and ST2 in heart failure: practical considerations and pitfalls using novel biomarkers. Curr. Heart Fail. Rep. 2013; 10:441-9.

72. Ahmad T, Fiuzat M, Neely B, et al. Biomarkers of myocardial stress and fibrosis as predictors of mode of death in patients with chronic heart failure. JACC Heart Fail. 2014; 2:260-8.

73. Bayes-Genis A, de AM, Vila J, et al. Head-to-head comparison of 2 myocardial fibrosis biomarkers for long-term heart failure risk stratification: ST2 versus galectin-3. J. Am. Coll. Cardiol. 2014; 63:158-66.

74. Gaggin HK, Szymonifka J, Bhardwaj A, et al. Head-to-head comparison of serial soluble ST2, growth differentiation factor-15, and highly-sensitive troponin T measurements in patients with chronic heart failure. JACC Heart Fail. 2014; 2:65-72.

75. Ky B, French B, Levy WC, et al. Multiple biomarkers for risk prediction in chronic heart failure. Circ. Heart Fail. 2012; 5:183-90.

76. Sabatine MS, Morrow DA, de Lemos JA, et al. Evaluation of multiple biomarkers of cardiovascular stress for risk prediction and guiding medical therapy in patients with stable coronary disease. Circulation, 2012; 125:233-40.

77. Ahmad T, Fiuzat M, Pencina MJ, et al. Charting a roadmap for heart failure biomarker studies. JACC Heart Fail. 2014; 2:477-88.

78. Miller WL, Hartman KA, Grill DE, et al. Serial measurements of midregion proANP and copeptin in ambulatory patients with heart failure: incremental prognostic value of novel biomarkers in heart failure. Heart. 2012; 98:389-94.

79. Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ. Res. 2012; 110:483-95.

80. Wong LL, Armugam A, Sepramaniam S, et al. Circulating microRNAs in heart failure with reduced and preserved left ventricular ejection fraction. Eur. J. Heart Fail. 2015; 17:393-404.

81. Ovchinnikova ES, Schmitter D, Vegter EL, et al. Signature of circulating microRNAs in patients with acute heart failure. Eur. J. Heart Fail. 2016; 18:414-23.

82. Shah SH, Kraus WE, Newgard CB. Metabolomic profiling for the identification of novel biomarkers and mechanisms related to common cardiovascular diseases: form and function. Circulation. 2012; 126:1110-20.

83. Cheng ML, Wang CH, Shiao MS, et al. Metabolic disturbances identified in plasma are associated with outcomes in patients with heart failure: diagnostic and prognostic value of metabolomics. J. Am. Coll. Cardiol. 2015; 65:1509-20.

84. Zheng Y, Yu B, Alexander D, et al. Associations between metabolomic compounds and incident heart failure among African Americans: the ARIC Study. Am. J. Epidemiol. 2013; 178:534-42.

85. Ledwidge M, Gallagher J, Conlon C, et al. Natriuretic peptide-based screening and collaborative care for heart failure: the STOP-HF randomized trial. JAMA. 2013; 310:66-74.

86. Huelsmann M, Neuhold S, Resl M, et al. PONTIAC (NT-proBNP selected prevention of cardiac events in a population of diabetic patients without a history of cardiac disease): a prospective randomized controlled trial. J. Am. Coll. Cardiol. 2013; 62:1365-72.

87. Anand IS, Fisher LD, Chiang YT, et al. Changes in brain natriuretic peptide and norepinephrine over time and mortality and morbidity in the Valsartan Heart Failure Trial (Val-HeFT). Circulation. 2003; 107:1278-83.

88. Berger R, Huelsman M, Strecker K, et al. B-type natriuretic peptide predicts sudden death in patients with chronic heart failure. Circulation. 2002; 105:2392-7.

89. Forfia PR, Watkins SP, Rame JE, et al. Relationship between B-type natriuretic peptides and pulmonary capillary wedge pressure in the intensive care unit. J Am Coll Cardiol. 2005; 45:1667-71.

90. Maeda K, Tsutamoto T, Wada A, et al. High levels of plasma brain natriuretic peptide and interleukin-6 after optimized treatment for heart failure are independent risk factors for morbidity and mortality in patients with congestive heart failure. J Am Coll Cardiol. 2000; 36:1587-93.

91. Neuhold S, Huelsmann M, Strunk G, et al. Comparison of copeptin, B-type natriuretic peptide, and aminoterminal pro-B-type natriuretic peptide in patients with chronic heart failure: prediction of death at different stages of the disease. J Am Coll Cardiol. 2008; 52:266-72.

92. Taub PR, Daniels LB, Maisel AS. Usefulness of B-type natriuretic peptide levels in predicting hemodynamic and clinical decompensation. Heart Fail Clin. 2009; 5:169-75.

93. Bettencourt P, Azevedo A, Pimenta J, et al. N-terminal-pro-brain natriuretic peptide predicts outcome after hospital discharge in heart failure patients. Circulation. 2004; 110:2168-74.

94. Cheng V, Kazanagra R, Garcia A, et al. A rapid bedside test for B-type peptide predicts treatment outcomes in patients admitted for decompensated heart failure: a pilot study. J. Am. Coll. Cardiol. 2001; 37:386-91.

95. Fonarow GC, Peacock WF, Horwich TB, et al. Usefulness of B-type natriuretic peptide and cardiac troponin levels to predict in-hospital mortality from ADHERE. Am. J. Cardiol. 2008; 101:231-7.

96. Logeart D, Thabut G, Jourdain P, et al. Predischarge B-type natriuretic peptide assay for identifying patients at high risk of re-admission after decompensated heart failure. J. Am. Coll. Cardiol. 2004; 43:635-41.

97. Maisel A, Hollander JE, Guss D, et al. Primary results of the Rapid Emergency Department Heart Failure Outpatient Trial (REDHOT). A multicenter study of B-type natriuretic peptide levels, emergency department decision making, and outcomes in patients presenting with shortness of breath. J. Am. Coll. Cardiol. 2004; 44:1328-33.

98. Zairis MN, Tsiaousis GZ, Georgilas AT, et al. Multimarker strategy for the prediction of 31 days cardiac death in patients with acutely decompensated chronic heart failure. Int. J. Cardiol. 2010; 141:284-90.

99. Peacock WFI, De Marco T, Fonarow GC, et al. Cardiac troponin and outcome in acute heart failure. N. Engl. J. Med. 2008; 358:2117-26.

100. Lee DS, Stitt A, Austin PC, et al. Prediction of heart failure mortality in emergent care: a cohort study. Ann. Intern. Med. 2012; 156:767-75.

101. Santaguida PL, Don-Wauchope AC, Oremus M, et al. BNP and NT-proBNP as prognostic markers in tionpersons with acute decompensated heart failure: a systematic review. Heart Fail Rev. 2014; 19:453-70.

102. Horwich TB, Patel J, MacLellan WR, et al. Cardiac troponin I is associated with impaired hemodynamics, progressive left ventricular dysfunction, and increased mortality rates in advanced heart failure. Circulation. 2003; 108:833-8.

103. Ilva T, Lassus J, Siirila-Waris K, et al. Clinical significance of cardiac troponins I and T in acute heart failure. Eur. J. Heart Fail. 2008; 10:772-9.

104. Dhaliwal AS, Deswal A, Pritchett A, et al. Reduction in BNP levels with treatment of decompensated heart failure and future clinical events. J. Card Fail. 2009; 15:293-9.

105. O'Connor CM, Hasselblad V, Mehta RH, et al. Triage after hospitalization with advanced heart failure: the ESCAPE (Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness) risk model and discharge score. J Am Coll Cardiol. 2010; 55:872-8.

106. O'Brien RJ, Squire IB, Demme B, et al. Pre-discharge, but not admission, levels of NT-proBNP predict adverse prognosis following acute LVF. Eur. J. Heart Fail. 2003; 5:499-506.

107. Cohen-Solal A, Logeart D, Huang B, et al. Lowered B-type natriuretic peptide in response to levosimendan or dobutamine treatment is associated with improved survival in patients with severe acutely decompensated heart failure. J. Am. Coll. Cardiol. 2009; 53:2343-8.

108. Salah K, Kok WE, Eurlings LW, et al. A novel discharge risk model for patients hospitalised for acute decompensated heart failure incorporating N-terminal pro-B-type natriuretic peptide levels: a European coLlaboration on Acute decompeNsated Heart Failure: ELAN-HF Score. Heart. 2014; 100:115-25.

109. Flint KM, Allen LA, Pham M, et al. B-type natriuretic peptide predicts 30-day readmission for heart failure but not readmission for other causes. J. Am. Heart Assoc. 2014; 3:e000806.

110. Kociol RD, Horton JR, Fonarow GC, et al. Admission, discharge, or change in B-type natriuretic peptide and long-term outcomes: data from Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF) linked to Medicare claims. Circ. Heart Fail. 2011; 4:628-36.

111. Kociol RD, McNulty SE, Hernandez AF, et al. Markers of decongestion, dyspnea relief, and clinical outcomes among patients hospitalized with acute heart failure. Circ. Heart Fail. 2013; 6:240-5.

 Verdiani V, Ognibene A, Rutili MS, et al. NT-ProBNP reduction percentage during hospital stay predicts long-term mortality and readmission in heart failure patients. J. Cardiovasc. Med. (Hagerstown.). 2008; 9:694-9.
 Bayes-Genis A, Lopez L, Zapico E, et al. NT-ProBNP reduction percentage during admission for acutely

decompensated heart failure predicts long-term cardiovascular mortality. J. Card Fail. 2005; 11:S3-S8. 114. Alonso-Martinez JL, Llorente-Diez B, Echegaray-Agara M, et al. C-reactive protein as a predictor of improvement and readmission in heart failure. Eur. J. Heart Fail. 2002; 4:331-6.

115. Dieplinger B, Gegenhuber A, Kaar G, et al. Prognostic value of established and novel biomarkers in patients with shortness of breath attending an emergency department. Clin. Biochem. 2010; 43:714-9.

116. Januzzi JL Jr, Peacock WF, Maisel AS, et al. Measurement of the interleukin family member ST2 in patients with acute dyspnea: results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) study. J. Am. Coll. Cardiol. 2007; 50:607-13.

117. Manzano-Fernandez S, Mueller T, Pascual-Figal D, et al. Usefulness of soluble concentrations of interleukin family member ST2 as predictor of mortality in patients with acutely decompensated heart failure relative to left ventricular ejection fraction. Am. J. Cardiol. 2011; 107:259-67.

118. Rehman SU, Mueller T, Januzzi JL Jr. Characteristics of the novel interleukin family biomarker ST2 in patients with acute heart failure. J. Am. Coll. Cardiol. 2008; 52:1458-65.

119. Shah RV, Chen-Tournoux AA, Picard MH, et al. Galectin-3, cardiac structure and function, and long-term mortality in patients with acutely decompensated heart failure. Eur. J. Heart Fail. 2010; 12:826-32.

120. de Boer RA, Lok DJ, Jaarsma T, et al. Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann. Med. 2011; 43:60-8.

121. Lok DJ, van der Meer P, de la Porte PW, et al. Prognostic value of galectin-3, a novel marker of fibrosis, in patients with chronic heart failure: data from the DEAL-HF study. Clin. Res. Cardiol. 2010; 99:323-8.

122. Tang WH, Shrestha K, Shao Z, et al. Usefulness of plasma galectin-3 levels in systolic heart failure to predict renal insufficiency and survival. Am J Cardiol. 2011; 108:385-90.

123. Tang WH, Wu Y, Grodin JL, et al. Prognostic Value of Baseline and Changes in Circulating Soluble ST2 Levels and the Effects of Nesiritide in Acute Decompensated Heart Failure. JACC Heart Fail. 2016; 4:68-77.

124. Januzzi JL, Mebazaa A, Di SS. ST2 and prognosis in acutely decompensated heart failure: the International ST2 Consensus Panel. Am J Cardiol. 2015; 115:26B-31B.

125. Mebazaa A, Di SS, Maisel AS, et al. ST2 and multimarker testing in acute decompensated heart failure. Am J Cardiol. 2015; 115:38B-43B.

126. Fermann GJ, Lindsell CJ, Storrow AB, et al. Galectin 3 complements BNP in risk stratification in acute heart failure. Biomarkers. 2012; 17:706-13.

127. Lassus J, Gayat E, Mueller C, et al. Incremental value of biomarkers to clinical variables for mortality prediction in acutely decompensated heart failure: the Multinational Observational Cohort on Acute Heart Failure (MOCA) study. Int. J. Cardiol. 2013; 168:2186-94.

128. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). The CONSENSUS Trial Study Group. N. Engl. J. Med. 1987; 316:1429-35.

129. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. The SOLVD Investigators. N. Engl. J. Med. 1991; 325:293-302.

130. Packer M, Poole-Wilson PA, Armstrong PW, et al. Comparative effects of low and high doses of the angiotensin-converting enzyme inhibitor, lisinopril, on morbidity and mortality in chronic heart failure. ATLAS Study Group. Circulation. 1999; 100:2312-8.

131. Pfeffer MA, Braunwald E, Moyé LA, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction: results of the Survival and Ventricular Enlargement Trial. The SAVE Investigators. N. Engl. J Med. 1992; 327:669-77.

132. Effect of ramipril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure. The Acute Infarction Ramipril Efficacy (AIRE) Study Investigators. Lancet. 1993; 342:821-8.

133. Kober L, Torp-Pedersen C, Carlsen JE, et al. A clinical trial of the angiotensin-converting-enzyme inhibitor trandolapril in patients with left ventricular dysfunction after myocardial infarction. Trandolapril Cardiac Evaluation (TRACE) Study Group. N. Engl. J Med. 1995; 333:1670-6.

134. Cohn JN, Tognoni G, Investigators VHFT. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N. Engl. J. Med. 2001; 345:1667-75.

135. Pfeffer MA, McMurray JJV, Velazquez EJ, et al. Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N. Engl. J. Med. 2003; 349:1893-906.

136. Konstam MA, Neaton JD, Dickstein K, et al. Effects of high-dose versus low-dose losartan on clinical outcomes in patients with heart failure (HEAAL study): a randomised, double-blind trial. Lancet. 2009; 374:1840-8.
137. Pfeffer MA, Swedberg K, Granger CB, et al. Effects of candesartan on mortality and morbidity in patients with chronic heart failure: the CHARM-Overall programme. Lancet. 2003; 362:759-66.

138. McMurray JJV, Packer M, Desai AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 2014; 371:993-1004.

139. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet. 1999; 353:2001-7.

140. Packer M, Fowler MB, Roecker EB, et al. Effect of carvedilol on the morbidity of patients with severe chronic heart failure: results of the carvedilol prospective randomized cumulative survival (COPERNICUS) study. Circulation. 2002; 106:2194-9.

141. Eschalier R, McMurray JJV, Swedberg K, et al. Safety and efficacy of eplerenone in patients at high risk for hyperkalemia and/or worsening renal function: analyses of the EMPHASIS-HF study subgroups (Eplerenone in Mild Patients Hospitalization And SurvIval Study in Heart Failure). J Am Coll Cardiol. 2013; 62:1585-93.

142. Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N. Engl. J. Med. 1999; 341:709-17.

143. Garg R, Yusuf S. Overview of randomized trials of angiotensin-converting enzyme inhibitors on mortality and morbidity in patients with heart failure. Collaborative Group on ACE Inhibitor Trials. JAMA. 1995; 273:1450-6.

144. Woodard-Grice AV, Lucisano AC, Byrd JB, et al. Sex-dependent and race-dependent association of XPNPEP2 C-2399A polymorphism with angiotensin-converting enzyme inhibitor-associated angioedema. Pharmacogenet. Genomics. 2010; 20:532-6.

145. Yusuf S, Teo KK, Pogue J, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N. Engl. J. Med. 2008; 358:1547-59.

146. Yusuf S, Teo K, Anderson C, et al. Effects of the angiotensin-receptor blocker telmisartan on cardiovascular events in high-risk patients intolerant to angiotensin-converting enzyme inhibitors: a randomised controlled trial. Lancet. 2008; 372:1174-83.

147. Entresto [package insert]. Hanover, NJ: Novartis Pharmaceuticals Corporation, 2015.

148. Packer M, Califf RM, Konstam MA, et al. Comparison of omapatrilat and enalapril in patients with chronic heart failure: the Omapatrilat Versus Enalapril Randomized Trial of Utility in Reducing Events (OVERTURE). Circulation. 2002; 106:920-6.

149. Kostis JB, Packer M, Black HR, et al. Omapatrilat and enalapril in patients with hypertension: the Omapatrilat Cardiovascular Treatment vs. Enalapril (OCTAVE) trial. Am J Hypertens. 2004; 17:103-11.
150. Vardeny O, Miller R, Solomon SD. Combined neprilysin and renin-angiotensin system inhibition for the treatment of heart failure. JACC Heart Fail. 2014; 2:663-70.

151. Messerli FH, Nussberger J. Vasopeptidase inhibition and angio-oedema. Lancet. 2000; 356:608-9.

152. Braunwald É. The path to an angiotensin receptor antagonist-neprilysin inhibitor in the treatment of heart failure. J Am Coll Cardiol. 2015; 65:1029-41.

153. Ruilope LM, Dukat A, Böhm M, et al. Blood-pressure reduction with LCZ696, a novel dual-acting inhibitor of the angiotensin II receptor and neprilysin: a randomised, double-blind, placebo-controlled, active comparator study. Lancet. 2010; 375:1255-66.

154. Bohm M, Robertson M, Ford I, et al. Influence of cardiovascular and noncardiovascular co-morbidities on outcomes and treatment effect of heart rate reduction with ivabradine in stable heart failure (from the SHIFT Trial). Am J Cardiol. 2015; 116:1890-7.

155. Swedberg K, Komajda M, Böhm M, et al. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet. 2010; 376:875-85.

156. Fox K, Ford I, Steg PG, et al. Ivabradine in stable coronary artery disease without clinical heart failure. N. Engl. J. Med. 2014; 371:1091-9.

157. Fox K, Ford I, Steg PG, et al. Ivabradine for patients with stable coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a randomised, double-blind, placebo-controlled trial. Lancet. 2008; 372:807-16.

158. Pitt B, Segal R, Martinez FA, et al. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE). Lancet. 1997; 349:747-52.

159. Pitt B, Remme W, Zannad F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N. Engl. J. Med. 2003; 348:1309-21.

160. Authors CI. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet. 1999; 353:9-13.

161. Packer M, Coats AJ, Fowler MB, et al. Effect of carvedilol on survival in severe chronic heart failure. N. Engl. J. Med. 2001; 344:1651-8.

162. Taylor AL, Ziesche S, Yancy C, et al. Combination of isosorbide dinitrate and hydralazine in blacks with heart failure. N. Engl. J. Med. 2004; 351:2049-57.

163. Cohn JN, Archibald DG, Ziesche S, et al. Effect of vasodilator therapy on mortality in chronic congestive heart failure. Results of a Veterans Administration Cooperative Study. N. Engl. J. Med. 1986; 314:1547-52.

164. Chobanian AV, Bakris GL, Black HR, et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension. 2003; 42:1206-52.

165. Levy D, Larson MG, Vasan RS, et al. The progression from hypertension to congestive heart failure. JAMA. 1996; 275:1557-62.

166. Pitt B, Pfeffer MA, Assmann SF, et al. Spironolactone for heart failure with preserved ejection fraction. N. Engl. J Med. 2014; 370:1383-92.

167. Pfeffer MA, Claggett B, Assmann SF, et al. Regional variation in patients and outcomes in the Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist (TOPCAT) trial. Circulation. 2015; 131:34-42.

168. Edelmann F, Wachter R, Schmidt AG, et al. Effect of spironolactone on diastolic function and exercise capacity in patients with heart failure with preserved ejection fraction: the Aldo-DHF randomized controlled trial. JAMA. 2013; 309:781-91.

169. Yusuf S, Pfeffer MA, Swedberg K, et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet. 2003; 362:777-81.

170. Massie BM, Carson PE, McMurray JJ, et al. Irbesartan in patients with heart failure and preserved ejection fraction. N. Engl. J Med. 2008; 359:2456-67.

171. Redfield MM, Anstrom KJ, Levine JA, et al. Isosorbide Mononitrate in Heart Failure with Preserved Ejection Fraction. N. Engl. J Med. 2015; 373:2314-24.

172. Redfield MM, Chen HH, Borlaug BA, et al. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA: 2013; 309:1268-77.

173. Anker SD, Comin CJ, Filippatos G, et al. Ferric carboxymaltose in patients with heart failure and iron-tiondeficiency. N. Engl. J. Med. 2009; 361:2436-48.

174. Ponikowski P, van Veldhuisen DJ, Comin-Colet J, et al. Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiency. Eur. Heart J. 2015; 36:657-68.

175. Kapoor M, Schleinitz MD, Gemignani A, et al. Outcomes of patients with chronic heart failure and iron deficiency treated with intravenous iron: a meta-analysis. Cardiovasc Hematol. Disord. Drug Targets. 2013; 13:35-44.

176. Swedberg K, Young JB, Anand IS, et al. Treatment of anemia with darbepoetin alfa in systolic heart failure. N. Engl. J Med. 2013; 368:1210-9.

177. Cleland JG, Sullivan JT, Ball S, et al. Once-monthly administration of darbepoetin alfa for the treatment of patients with chronic heart failure and anemia: a pharmacokinetic and pharmacodynamic investigation. J Cardiovasc Pharmacol. 2005; 46:155-61.

178. Klapholz M, Abraham WT, Ghali JK, et al. The safety and tolerability of darbepoetin alfa in patients with anaemia and symptomatic heart failure. Eur. J. Heart Fail. 2009; 11:1071-7.

179. Ponikowski P, Anker SD, Szachniewicz J, et al. Effect of darbepoetin alfa on exercise tolerance in anemic patients with symptomatic chronic heart failure: a randomized, double-blind, placebo-controlled trial. J Am Coll Cardiol. 2007; 49:753-62.

180. Silverberg DS, Wexler D, Sheps D, et al. The effect of correction of mild anemia in severe, resistant congestive heart failure using subcutaneous erythropoietin and intravenous iron: a randomized controlled study. J Am Coll Cardiol. 2001; 37:1775-80.

181. van der Meer P, Groenveld HF, Januzzi JL Jr, et al. Erythropoietin treatment in patients with chronic heart failure: a meta-analysis. Heart. 2009; 95:1309-14.

182. van Veldhuisen DJ, Dickstein K, Cohen-Solal A, et al. Randomized, double-blind, placebo-controlled study to evaluate the effect of two dosing regimens of darbepoetin alfa in patients with heart failure and anaemia. Eur Heart J. 2007; 28:2208-16.

183. Ghali JK, Anand IS, Abraham WT, et al. Randomized double-blind trial of darbepoetin alfa in patients with symptomatic heart failure and anemia. Circulation. 2008; 117:526-35.

184. Kotecha D, Ngo K, Walters JA, et al. Erythropoietin as a treatment of anemia in heart failure: systematic review of randomized trials. Am Heart J. 2011; 161:822-31.

185. Bennett CL, Silver SM, Djulbegovic B, et al. Venous thromboembolism and mortality associated with recombinant erythropoietin and darbepoetin administration for the treatment of cancer-associated anemia. JAMA. 2008; 299:914-24.

186. Bohlius J, Wilson J, Seidenfeld J, et al. Recombinant human erythropoietins and cancer patients: updated meta-analysis of 57 studies including 9353 patients. J Natl. Cancer Inst. 2006; 98:708-14.

187. Pfeffer MA, Burdmann EA, Chen CY, et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N. Engl. J Med. 2009; 361:2019-32.

188. Szczech LA, Barnhart HX, Inrig JK, et al. Secondary analysis of the CHOIR trial epoetin-alpha dose and achieved hemoglobin outcomes. Kidney Int. 2008; 74:791-8.

189. Xie X, Atkins E, Lv J, et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. Lancet. 2016; 387:435-43.

190. Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure lowering on outcome incidence in hypertension: 7. Effects of more vs. less intensive blood pressure lowering and different achieved blood pressure levels - updated overview and meta-analyses of randomized trials. J Hypertens. 2016; 34:613-22.

191. Wright JT Jr, Williamson JD, Whelton PK, et al. A Randomized Trial of Intensive versus Standard Blood-Pressure Control. N. Engl. J Med. 2015; 373:2103-16.

192. Williamson JD, Supiano MA, Applegate WB, et al. Intensive vs standard blood pressure control and cardiovascular disease outcomes in adults aged >/=75 years: A randomized clinical trial. JAMA. 2016; 315:2673-82.
193. Lv J, Ehteshami P, Sarnak MJ, et al. Effects of intensive blood pressure lowering on the progression of

chronic kidney disease: a systematic review and meta-analysis. CMAJ. 2013. 194. Yancy C, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA Guideline for the Management of Heart Failure. a

report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;128:e240–327.

195. Aronow WS, Fleg JL, Pepine CJ, et al. ACCF/AHA 2011 expert consensus document on hypertension in the elderly: a report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus documents. Developed in collaboration with the American Academy of Neurology, American Geriatrics Society, American Society for Preventive Cardiology, American Society of Hypertension, American Society of Nephrology, Association of Black Cardiologists, and European Society of Hypertension. Circulation. 2011;123:2434 –506.

196. Law MR, Morris JK, Wald NJ. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ. 2009; 338:b1665.

197. Aronow WS, Ahn C, Kronzon I. Effect of propranolol versus no propranolol on total mortality plus nonfatal myocardial infarction in older patients with prior myocardial infarction, congestive heart failure, and left ventricular ejection fraction > or = 40% treated with diuretics plus angiotensin-converting enzyme inhibitors. Am J Cardiol. 1997; 80:207-9.

198. van Veldhuisen DJ, Cohen-Solal A, Bohm M, et al. Beta-blockade with nebivolol in elderly heart failure patients with impaired and preserved left ventricular ejection fraction: Data From SENIORS (Study of Effects of Nebivolol Intervention on Outcomes and Rehospitalization in Seniors With Heart Failure). J Am Coll Cardiol. 2009; 53:2150-8.

199. Piller LB, Baraniuk S, Simpson LM, et al. Long-term follow-up of participants with heart failure in the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). Circulation. 2011; 124:1811-8.

200. Arzt M, Floras JS, Logan AG, et al. Suppression of central sleep apnea by continuous positive airway pressure and transplant-free survival in heart failure: a post hoc analysis of the Canadian Continuous Positive Airway Pressure for Patients with Central Sleep Apnea and Heart Failure Trial (CANPAP). Circulation. 2007; 115:3173-80.

201. Bradley TD, Logan AG, Kimoff RJ, et al. Continuous positive airway pressure for central sleep apnea and heart failure. N. Engl. J. Med. 2005; 353:2025-33.

202. MacDonald M, Fang J, Pittman SD, et al. The current prevalence of sleep disordered breathing in congestive heart failure patients treated with beta-blockers. J. Clin. Sleep Med. 2008; 4:38-42.

203. Cowie MR, Woehrle H, Wegscheider K, et al. Adaptive Servo-Ventilation for Central Sleep Apnea in Systolic Heart Failure. N. Engl. J Med. 2015; 373:1095-105.

204. McEvoy RD, Antic NA, Heeley E, et al. CPAP for prevention of cardiovascular events in obstructive sleep apnea. N. Engl. J. Med. 2016; 375:919-31.

205. Holmqvist F, Guan N, Zhu Z, et al. Impact of obstructive sleep apnea and continuous positive airway pressure therapy on outcomes in patients with atrial fibrillation-Results from the Outcomes Registry for Better Informed Treatment of Atrial Fibrillation (ORBIT-AF). Am Heart J. 2015; 169:647-54.

Appendix 1. Author Relationships With Industry and Other Entities (Relevant)—2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure (December 2015)

Committee Member	Employment	Consultant	Speakers Bureau	Ownership/ Partnership/ Principal	Personal Research	Institutional, Organizational, or Other Financial Benefit	Expert Witness	Voting Recusals By Section*
Clyde W. Yancy (Chair)	Northwestern University Feinberg School of Medicine, Division of Cardiology—Professor of Medicine and Chief; Diversity and Inclusion—Vice Dean	None	None	None	None	None Am	None	None
Mariell Jessup (Vice Chair)	Fondation Leducq—Chief Scientific Officer	None	None	None	None	None As	None	None
Biykem Bozkurt	Baylor College of Medicine, Department of Medicine — Professor of Medicine; Cardiology Section, DeBakey VA Medical Center — Chief; The Mary and Gordon Cain Chair & W.A. "Tex" and Deborah Moncrief, Jr. — Chair; Winters Center for Heart Failure Research — Director; Cardiovascular Research Institute — Associate Director	None	None	None	• Novartis	None	None	7.3.2.10, 7.3.2.11, 7.3.3, and 9.5.
Javed Butler	Stony Brook University— Division Chief of Cardiology	 Bayer† Boehringer Ingelheim CardioCell† Luitpold Medtronic Merck† Novartis† Relypsa† Takeda Trevena† Z Pharma 	• Novartis†	None	• Amgen (DSMB)†	None	None	7.3.2.10, 7.3.2.11, 7.3.3, and 9.5.

		• Zensun						
Donald E. Casey, Jr	Thomas Jefferson College of Population Health— Faculty; Alvarez & Marsal IPO4Health— Principal and Founder	None	None	None	None	None	None	None
Monica M. Colvin	University of Michigan— Associate Professor of Medicine, Cardiology	None	None	None	None	None	None	None
Mark H. Drazner	University of Texas Southwestern Medical Center—Professor, Internal Medicine	None	None	None	None	None	None	None
Gerasimos S. Filippatos	National and Kapodistrian University of Athens; Attikon University Hospital, Department of Cardiology, Heart Failure Unit—Professor of Cardiology	None	None	None	 Bayer† Bayer (DSMB) Novartis† Servier Pharmaceuticals† Vifor 		None erican art sociation。	7.3.2.10, 7.3.2.11, 7.3.3, 9.2, and 9.5.
Gregg C. Fonarow	Ahmanson-UCLA Cardiomyopathy Center— Director; UCLA Division of Cardiology—Co-Chief	 Amgen Janssen Pharmaceuticals Novartis† 	None	None	Novartis†	None	None	7.3.2.10, 7.3.2.11, 7.3.3, and 9.5.
Michael M. Givertz	Brigham and Women's Hospital—Professor of Medicine	Merck Novartis	None	None	None	None	None	7.3.2.10, 7.3.2.11, 7.3.3, and 9.5.
Steven M. Hollenberg	Cooper University Hospital— Director, Coronary Care Unit, Professor of Medicine	None	None	None	None	None	None	None
JoAnn Lindenfeld	Vanderbilt Heart and Vascular Institute—Director, Advanced Heart Failure and Transplant Section—Professor of Medicine	 Abbott Janssen Pharmaceuticals Novartis Relypsa⁺ ResMed⁺ 	None	None	• AstraZeneca • Novartis†	None	None	6.3, 7.3.2.10, 7.3.2.11, 7.3.3, 9.5, and 9.6.
Frederick A. Masoudi	University of Colorado, Anschutz Medical Campus—Professor of Medicine, Division of Cardiology	None	None	None	None	None	None	None
Patrick E. McBride	University of Wisconsin School of Medicine and Public Health— Professor of Medicine and Family	None	None	None	None	None	None	None

	Medicine; Associate Director, Preventive Cardiology							
Pamela N. Peterson	University of Colorado, Denver Health Medical Center— Associate Professor of Medicine, Division of Cardiology	None	None	None	None	None	None	None
Lynne Warner Stevenson	Brigham and Women's Hospital Cardiovascular Division— Director, Cardiomyopathy and Heart Failure Program	None	None	None	 Novartis— PARENT trial (PI) NHLBI— INTERMACS (Co–PI) 	None	None	7.3.2.10, 7.3.2.11, 7.3.3, and 9.5.
Cheryl Westlake	Azusa Pacific University, School of Nursing, Doctoral Programs— Professor	None	None	None	None		None art lociation。	None

This table represents the relationships of committee members with industry and other entities that were determined to be relevant to this document. These relationships were reviewed and updated in conjunction with all meetings and/or conference calls of the writing committee during the document development process. The table does not necessarily reflect relationships with industry at the time of publication. A person is deemed to have a significant interest in a business if the interest represents ownership of \geq 5% of the voting stock or share of the business entity, or ownership of \geq \$5,000 of the fair market value of the business entity, or if funds received by the person from the business entity exceed 5% of the person's gross income for the previous year. Relationships that exist with no financial benefit are also included for the purpose of transparency. Relationships in this table are modest unless otherwise noted.

According to the ACC/AHA, a person has a *relevant* relationship IF: a) The *relationship or interest* relates to the same or similar subject matter, intellectual property or asset, topic, or issue addressed in the *document*; or b) the *company/entity* (with whom the relationship exists) makes a drug, drug class, or device addressed in the *document*, or makes a competing drug or device addressed in the *document*; or c) the *person or a member of the person's household* has a reasonable potential for financial, professional, or other personal gain or loss as a result of the issues/content addressed in the *document*.

*Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry and other entities may apply. †Significant relationship.

ACC indicates American College of Cardiology; ACCF, American College of Cardiology Foundation; AHA, American Heart Association; DCRI, Duke Clinical Research Institute; DSMB, data safety monitoring board; HFSA, Heart Failure Society of America; NHLBI, National Heart, Lung, and Blood Institute; INTERMACS, Interagency Registry for Mechanically Assisted Circulatory Support; PARENT, Pulmonary artery pressure reduction with entresto; UCLA, University of California, Los Angeles; and VA, Veterans Affairs.

Appendix 2. Reviewer Relationships With Industry and Other Entities (Comprehensive)—2017 ACC/AHA/HFSA

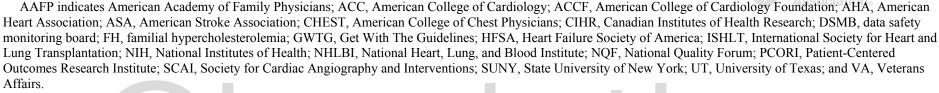
Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure (October 2016)

Reviewer	Representation	Employment	Consultant	Speakers Bureau	Ownership/ Partnership / Principal	Personal Research	Institutional, Organizational, or Other Financial Benefit	Expert Witness
Kim K. Birtcher	Official Reviewer— ACC/AHA Task Force on Clinical Practice Guidelines	University of Houston College of Pharmacy—Clinical Professor	• Jones & Bartlett Learning	None	None	None	None	None
Akshay S. Desai	Official Reviewer—HFSA	Brigham and Women's Hospital—Director, Heart Failure Disease Management, Advanced Heart Disease Section, Cardiovascular Division; Associate Professor of Medicine, Harvard Medical School	 Medscape Cardiology* Merck Novartis* Relypsa* St. Jude Medical* 	None	None	None	 Novartis* Thoratections 	None
Anita Deswal	Official Reviewer—AHA	Michael E. DeBakey VA Medical Center—Chief of Cardiology; Director, Heart Failure Program; Baylor College of Medicine— Professor of Medicine	None	None	None	• NIH*	 AHA AHA (GWTG Steering Committee)[†] HFSA[†] 	None
Dipti Itchhaporia	Official Reviewer—ACC Board of Trustees	Newport Coast Cardiology— Robert and Georgia Roth Endowed Chair for Excellence in Cardiac Care; Director of Disease Management	None	None	None	None	• St. Jude Medical	None
Ileana L. Piña	Official Reviewer—AHA	Montefiore Medical Center— Associate Chief for Academic Affairs, Cardiology; Professor of Medicine & Epidemiology and Population Health— Albert Einstein College of Medicine	• Relypsa	None	None	None	None	None
Geetha	Official	University of Missouri-Kansas	None	None	None	None	None	None

Raghuveer	Reviewer—ACC Board of Governors	City School of Medicine— Professor of Pediatrics; Children's Mercy Hospital— Pediatric Cardiology						
James E. Udelson	Official Reviewer—HFSA	Tufts Medical Center—Chief, Division of Cardiology	• Lantheus Medical Imaging	None	None	 Gilead (DSMB) GlaxoSmithKline (DSMB) NHLBI Otsuka 	 Abbott Laboratories AHA* Circulation / Circulation: Heart Failure† HFSA (Executive Council)† Pfizer/ GlaxoSmithKline Sunshine Heart 	None
Mary Norine Walsh	Official Reviewer—ACC Board of Trustees	St Vincent Heart Center of Indiana—Medical Director, Heart Failure and Cardiac Transplantation	None	None	None	None	 Corvia Medical Otsuka PCORI Thoratec 	None
David A. Baran	Organizational Reviewer—ISHLT	Newark Beth Israel Medical Center—Director of Heart Failure and Transplant Research	 Maquet Otsuka* 	• Novartis	None	• XDx* • NIH*	None	None
Kenneth Casey	Organizational Reviewer— CHEST	Wm. S. Middleton Memorial Veterans Hospital—Director, Sleep Medicine	None	None	None	None	• CHEST	None
M. Fuad Jan	Organizational Reviewer— CHEST	Aurora Advanced Healthcare—Cardiologist	None	None	None	None	None	None
Kenneth W. Lin	Organizational Reviewer—AAFP	Georgetown University School of Medicine— Clinician Educator Track, Associate Professor	None	None	None	None	None	None
Joaquin E. Cigarroa	Content Reviewer— ACC/AHA Task Force on Clinical Practice Guidelines	Oregon Health & Science University—Clinical Professor of Medicine	None	None	None	None	 ACC/AHA† AHA† ASA† Catheterization and Cardiovascular 	None

							Intervention† • NIH • Portland Metro Area AHA (President)† SCAI Quality Interventional Council†	
Lee A. Fleisher	Content Reviewer— ACC/AHA Task Force on Clinical Practice Guidelines	University of Pennsylvania Health System—Robert Dunning Dripps Professor of Anesthesiology and Critical Care; Chair, Department of Anesthesiology & Critical Care	 Blue Cross/ Blue Shield* NQF[†] Yale University 	None	None	• Johns Hopkins (DSMB)	 Association of University Anesthesiologists† NIH American Heart Association. 	None
Samuel S. Gidding	Content Reviewer— ACC/AHA Task Force on Clinical Practice Guidelines	Nemours/Alfred I. duPont Hospital for Children—Chief, Division of Pediatric Cardiology	 FH Foundation† International FH Foundation† 	None	None	 FH Foundation† NIH* 	None	None
James L. Januzzi	Content Reviewer	Massachusetts General Hospital—Hutter Family Professor of Medicine in the Field of Cardiology	 Critical Diagnostics* Novartis* Phillips Roche Diagnostics* Sphingotec* 	None	None	 Amgen (DSMB) Boeringer Ingelheim (DSMB)* Janssen Pharmaceuticals (DSMB) Prevencio* 	None	None
José A. Joglar	Content Reviewer— ACC/AHA Task Force on Clinical Practice Guidelines	UT Southwestern Medical Center—Professor of Internal Medicine; Clinical Cardiac Electrophysiology—Program Director	None	None	None	None	None	None
Edward K. Kasper	Content Reviewer	Johns Hopkins Cardiology— E. Cowles Andrus Professor in Cardiology	None	None	None	None	None	None
Wayne C.	Content Reviewer	University of Washington—	• Abbott	None	None	• NIH	• Amgen*	None

Levy		Professor of Medicine	Laboratories • Biotronik • GE Healthcare • HeartWare • PharminIN			 Novartis* St. Jude Medical* 	 AHA HeartWare* Novartis* Resmed* Thoratec 	
Judith E. Mitchell	Content Reviewer	SUNY Downstate Medical Center—Director/Heart Failure Center; SUNY Downstate College of Medicine—Associate Professor of Medicine	None	None	None	None	• Association of Black Cardiologists†	None
Sean P. Pinney	Content Reviewer—ACC Heart Failure and Transplant Council	Mount Sinai School of Medicine—Associate Professor of Medicine, Cardiology	 Acorda Therapeutics Thoratec XDx 	None	None	• Thoratec† • NIH†	None Association。	None
Randall C. Starling	Content Reviewer—ACC Heart Failure and Transplant Council	Cleveland Clinic Department of Cardiovascular Medicine— Vice Chairman, Department of Cardiovascular Medicine; Section Head, Heart Failure & Cardiac Transplant	BioControlMedtronicNovartis	None	None	 Medtronic NIH* Novartis† St. Jude Medical† 	• St. Jude Medical	None
W. H. Wilson Tang	Content Reviewer	Cleveland Clinic Foundation—Assistant Professor of Medicine	None	None	None	• NIH*	 Alnylam Pharmaceuticals NIH NHLBI Roche Novartis Thoratec 	None
Emily J. Tsai	Content Reviewer	Columbia University College of Physicians & Surgeons— Assistant Professor of Medicine, Division of Cardiology	None	None	None	 Bayer† Bristol-Myers Squib† NHLBI* 	None	None
Duminda N. Wijeysundera	Content Reviewer— ACC/AHA Task Force on Clinical Practice	Li Ka Shing Knowledge Institute of St. Michael's Hospital—Scientist; University of Toronto— Assistant Professor,	None	None	None	 CIHR (DSMB)† CIHR* Heart and Stroke Foundation of Canada* 	None	None


ſ	Guidelines	Department of Anesthesia and	• Ministry of Health	
		Institute of Health Policy	& Long-term Care	
		Management and Evaluation	of Ontario*	
			PCORI DSMB)†	

This table represents the relationships of reviewers with industry and other entities that were disclosed at the time of peer review, including those not deemed to be relevant to this document. The table does not necessarily reflect relationships with industry at the time of publication. A person is deemed to have a significant interest in a business if the interest represents ownership of \geq 5% of the voting stock or share of the business entity, or ownership of \geq \$5,000 of the fair market value of the business entity, or if funds received by the person from the business entity exceed 5% of the person's gross income for the previous year. A relationship is considered to be modest if it is less than significant under the preceding definition. Relationships that exist with no financial benefit are also included for the purpose of transparency. Relationships in this table are modest unless otherwise noted. Names are listed in alphabetical order within each category of review.

American College of Physicians did not provide a peer reviewer for this document.

*Significant relationship.

[†]No financial benefit.

Appendix 3. Abbreviations

ACE = angiotensin-converting enzyme ARB = angiotensin-receptor blocker ARNI = angiotensin receptor-neprilysin inhibitor BNP = B-type natriuretic peptide BP = blood pressureCOR = Class of Recommendation CPAP = continuous positive airway pressure EF = ejection fractionGDMT = guideline-directed management and therapy $HF_pEF =$ heart failure with preserved ejection fraction HFrEF = heart failure with reduced ejection fraction LOE = Level of Evidence LVEF = left ventricular ejection fraction NT-proBNP = N-terminal pro-B-type natriuretic peptide tion QoL = quality of life RCT = randomized controlled trial

2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America Clyde W. Yancy, Mariell Jessup, Biykem Bozkurt, Javed Butler, Donald E. Casey, Jr, Monica M. Colvin, Mark H. Drazner, Gerasimos S. Filippatos, Gregg C. Fonarow, Michael M. Givertz, Steven M. Hollenberg, JoAnn Lindenfeld, Frederick A. Masoudi, Patrick E. McBride, Pamela N. Peterson, Lynne Warner Stevenson and Cheryl Westlake

Circulation. published online April 28, 2017; *Circulation* is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231 Copyright © 2017 American Heart Association, Inc. All rights reserved. Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:

http://circ.ahajournals.org/content/early/2017/04/26/CIR.00000000000000509.citation

Data Supplement (unedited) at:

http://circ.ahajournals.org/content/suppl/2017/04/26/CIR.00000000000000509.DC1 http://circ.ahajournals.org/content/suppl/2017/04/26/CIR.000000000000509.DC2

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at: http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation* is online at: http://circ.ahajournals.org//subscriptions/

Author Relationships With Industry and Other Entities (Comprehensive)—2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure

Committee Member	Employment	Consultant	Speakers Bureau	Ownership/ Partnership/ Principal	Personal Research	Institutional, Organizational or Other Financial Benefit	Expert Witness
Clyde W. Yancy (<i>Chair</i>)	Northwestern University Feinberg School of Medicine, Division of Cardiology—Professor of Medicine and Chief; Diversity and Inclusion—Vice Dean	None	None	None	• PCORI†	• JAMA Cardiology (Deputy Editor)*	None
Mariell Jessup (Vice Chair)	Fondation Leducq—Chief Scientific Officer	None	None	None	None	• ABIM† • AHA† • Up to Date	None
Biykem Bozkurt	Baylor College of Medicine, Department of Medicine — Professor of Medicine; Cardiology Section, DeBakey VA Medical Center — Chief; The Mary and Gordon Cain Chair & W.A. "Tex" and Deborah Moncrief, Jr. — Chair; Winters Center for Heart Failure Research — Director; Cardiovascular Research Institute — Associate Director	None	None	None	• Novartis†	 ABIM ACC Heart Failure Council Chair Circulation Heart Failure Associate Editor Circulation Editorial Board Membership 	None
Javed Butler	Stony Brook University— Division Chief of Cardiology	 Bayer* Boehringer Ingelheim* CardioCell* CVRx Gilead Sciences Janssen Pharmaceuticals 	• Novartis*	None	 Amgen (DSMB)* Bristol-Myers Squibb (DSMB) Corvia Medical (DSMB) European Union* NIH* 	 AHA (Deputy Chief Science Officer)* American Heart Journal (Editorial Board)† European Journal of Heart Failure (Associate Editor)† HFSA (Executive 	None

© 2017 American College of Cardiology Foundation, the American Heart Association, Inc., and the Heart Failure Society of America.

		 Luitpold Pharmaceuticals Medscape Medtronic Merck* Novartis* PharmaIn Relypsa* Stealth Peptide Takeda† Trevena* Z Pharma Zensun 				Council Member)† • JACC† • JACC: Heart Failure† • Medscape • NIH • St. Jude Medical	
Donald E. Casey, Jr.	Thomas Jefferson College of Population Health— Adjunct Faculty; Alvarez & Marsal IPO4Health— Principal and Founder	None	None	None	None	None	None
Monica M. Colvin	University of Michigan— Associate Professor of Medicine, Cardiology	None	None	None	• Scientific Registry of Transplant Recipients/HRSA*	• CareDX • Thoratec	None
Mark H. Drazner	University of Texas Southwestern Medical Center—Professor, Internal Medicine	None	None	• Trevena*	• AHA*	 Alnylam DCRI/Otsuka AHA Circulation (Senior Associate Editor)† NHLBI (Co-PI for GUIDE-IT) St. Jude Medical (HF Fellowship)* Up to Date 	None
Gerasimos S. Filippatos	National and Kapodistrian University of Athens; Attikon University Hospital, Department of Cardiology, Heart Failure Unit—Professor of Cardiology	None	None	None	 Bayer (Steering Committee)* Bayer (DSMB) Cardiorentis (Steering Committee)† European Union* Medtronic 	• European Heart Journal (Associate Editor)	None

					 (Steering Committee)† Novartis (Steering Committee)* Servier Pharmaceuticals (Steering Committee)* Vifor (Endpoint Adjudication Committee) 		
Gregg C. Fonarow	Ahmanson-UCLA Cardiomyopathy Center—Director; UCLA Division of Cardiology— Co-Chief	 Amgen Janssen Pharmaceuticals Medtronic Novartis* 	None	None	 Medtronic– IMPROVE-HF (Steering Committee)† NHLBI* NIH/NIAID* Novartis* 	 ACC/AHA Task Force on Data Standards[†] ACC/AHA Task Force on Performance Measures (Chair-Elect)[†] ACTION Registry GWTG Steering Committee (Chair)[†] AHA Consumer Health Quality Coordinating Committee[†] AHA Manuscript Oversight Committee[†] GWTG Steering Committee (PRT)[†] JAMA Cardiology (Associate Editor)[†] 	None
Michael M. Givertz	Brigham and Women's Hospital—Professor of Medicine	 Cardioxyl Merck Novartis 	None	None	BioControl (CEC)	None	None
Steven M. Hollenberg	Cooper University Hospital—Director, Coronary Care Unit, Professor of Medicine	None	None	None	None	None	None
JoAnn Lindenfeld	Vanderbilt Heart and Vascular Institute— Director, Advanced Heart Failure and Transplant	 Abbott Boston Scientific Cardiomems* CVRx 	None	None	 AstraZeneca† Novartis* St. Jude Medical* 	• JACC HF (Deputy Editor)	None

	Section— Professor of Medicine	 Janssen Pharmaceuticals Novartis Relypsa* RESMED* 					
Frederick A. Masoudi	University of Colorado, Denver—Associate Professor of Medicine, Division of Cardiology	• ABIM	None	None	• ACC* • ACC-NCDR* • AHRQ*	 Circulation (Associate Editor) JournalWatch Cardiology (Associate Editor) 	None
Patrick E. McBride	University of Wisconsin School of Medicine and Public Health—Professor of Medicine and Family Medicine; Associate Director, Preventive Cardiology	None	None	None	• NIH-NIDDK (DSMB)	None	None
Pamela N. Peterson	University of Colorado, Denver Health Medical Center—Associate Professor of Medicine, Division of Cardiology	• ACC*	None	None	None	• JAHA (Associate Editor)*	None
Lynne W. Stevenson	Brigham and Women's Hospital Cardiovascular Division—Director, Cardiomyopathy and Heart Failure Program	• St. Jude Medical • NHLBI	None	None	 Novartis (PI for Parent Trial)† NHLBI (Co–PI), (HF Network and Skills Training)† NHLBI— INTERMACS (Co–PI)† St. Jude Medical 	 Circulation Heart Failure (Senior Associate Editor)† Medtronic† 	None
Cheryl Westlake	Azusa Pacific University—Professor and Associate Dean, International and Community Programs	None	None	None	None	None	None

This table represents all relationships of committee members with industry and other entities that were reported by authors, including those not deemed to be relevant to this document, at the time this document was under development. The table does not necessarily reflect relationships with industry at the time of publication. A person is deemed to have a significant interest in a business if the interest represents ownership of \geq 5% of the voting stock or share of the business entity, or ownership of \geq \$5,000 of the fair market value of the business entity; or if funds received by the person from the business entity exceed 5% of the person's gross income for the previous year. Relationships that exist with no

financial benefit are also included for the purpose of transparency. Relationships in this table are modest unless otherwise noted. Please refer to <u>http://www.acc.org/guidelines/about-guidelines-and-clinical-documents/relationships-with-industry-policy</u> for definitions of disclosure categories or additional information about the ACC/AHA Disclosure Policy for Writing Committees.

*Significant relationship.

†No financial benefit.

ACC indicates American College of Cardiology; AHA, American Heart Association; ABIM, American Board of Internal Medicine; AHRQ, Agency for Healthcare Research and Quality; DCRI, Duke Clinical Research Institute; DSMB, data safety monitoring board; GWTG, Get With The Guidelines; HF, heart failure; HFSA, Heart Failure Society of America; HRSA, Heath Resources and Services Administration; HSAG, Health Services Advisory Group; IMPROVE-HF, Registry to Improve the use of Evidence-Based Heart Failure Therapies in the Outpatient Setting; INTERMACS, Interagency Registry for Mechanically Assisted Circulatory Support; JAHA, Journal of the American Heart Association; PCORI, Patient Centered Outcomes Research Institute; PI, principal investigator; PRT, pharmaceutical round table; NIDDK, National Institute of Diabetes and Digestive and Kidney Diseases; NIH, National Institutes of Health; NHLBI, National Heart, Lung, and Blood Institute; NIAID, National Institute of Allergy and Infectious Diseases; UCLA, University of California, Los Angeles; and VA, Veterans Affairs.

Appendix 1. Author Relationships With Industry and Other Entities (Relevant)-2017 ACC/AHA/HFSA Focused

Committee Member	Employment	Consultant	Speakers Bureau	Ownership/ Partnership/ Principal	Personal Research	Institutional, Organizational, or Other Financial Benefit	Expert Witness	Voting Recusals By Section*
Clyde W. Yancy (<i>Chair</i>)	Northwestern University Feinberg School of Medicine, Division of Cardiology— Professor of Medicine and Chief; Diversity and Inclusion—Vice Dean	None	None	None	None	None	None	None
Mariell Jessup	Fondation Leducq—Chief Scientific Officer	None	None	None	None	None	None	None
(Vice Chair) Biykem Bozkurt	Michael E. DeBakey VA Medical Center—The Mary and Gordon Cain Chair and Professor of Medicine	None	None	None	Novartis	None	None	7.3.2.10, 7.3.2.11, 7.3.3, and 9.5.
Javed Butler	Stony Brook University— Division Chief of Cardiology	 Bayer† Boehringer Ingelheim CardioCell† 	• Novartis†	None	• Amgen (DSMB)†	None	None	7.3.2.10, 7.3.2.11, 7.3.3, and 9.5.

Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure (December 2015)

		 Luitpold Medtronic Merck† Novartis† Relypsa† Takeda Trevena† Z Pharma Zensun 						
Donald E. Casey, Jr	Thomas Jefferson College of Population Health— Faculty; Alvarez & Marsal IPO4Health—Principal and Founder	None	None	None	None	None	None	None
Monica M. Colvin	University of Michigan— Associate Professor of Medicine, Cardiology	None	None	None	None	None	None	None
Mark H. Drazner	University of Texas Southwestern Medical Center—Professor, Internal Medicine	None	None	None	None	None	None	None
Gerasimos S. Filippatos	National and Kapodistrian University of Athens; Attikon University Hospital, Department of Cardiology, Heart Failure Unit—Professor of Cardiology	None	None	None	 Bayer† Bayer (DSMB) Novartis† Servier Pharmaceutic als† Vifor 	None	None	7.3.2.10, 7.3.2.11, 7.3.3, 9.2, and 9.5.
Gregg C. Fonarow	Ahmanson-UCLA Cardiomyopathy Center— Director; UCLA Division of Cardiology—Co-Chief	 Amgen Janssen Pharmaceuticals Novartis† 	None	None	Novartis†	None	None	7.3.2.10, 7.3.2.11, 7.3.3, and 9.5.
Michael M. Givertz	Brigham and Women's Hospital—Professor of Medicine	• Merck • Novartis	None	None	None	None	None	7.3.2.10, 7.3.2.11, 7.3.3, and 9.5.
Steven M.	Cooper University Hospital—	None	None	None	None	None	None	None

Hollenberg	Director, Coronary Care Unit, Professor of Medicine							
JoAnn Lindenfeld	Vanderbilt Heart and Vascular Institute—Director, Advanced Heart Failure and Transplant Section—Professor of Medicine	 Abbott Janssen Pharmaceuticals Novartis Relypsa† ResMed† 	None	None	• AstraZeneca • Novartis†	None	None	6.3, 7.3.2.10, 7.3.2.11, 7.3.3, 9.5 and 9.6.
Frederick A. Masoudi	University of Colorado, Denver—Associate Professor of Medicine, Division of Cardiology	None	None	None	None	None	None	None
Patrick E. McBride	University of Wisconsin School of Medicine and Public Health—Professor of Medicine and Family Medicine; Associate Director, Preventive Cardiology	None	None	None	None	None	None	None
Pamela N. Peterson	University of Colorado, Denver Health Medical Center— Associate Professor of Medicine, Division of Cardiology	None	None	None	None	None	None	None
Lynne W. Stevenson	Brigham and Women's Hospital Cardiovascular Division—Director, Cardiomyopathy and Heart Failure Program	None	None	None	Novartis— PARENT trial (PI) NHLBI— INTERMACS (Co–PI)	None	None	7.3.2.10, 7.3.2.11, 7.3.3, and 9.5.
Cheryl Westlake	Azusa Pacific University— Professor and Associate Dean, International and Community Programs	None	None	None	None	None	None	None

This table represents the relationships of committee members with industry and other entities that were determined to be relevant to this document. These relationships were reviewed and updated in conjunction with all meetings and/or conference calls of the writing committee during the document development process. The table does not necessarily reflect relationships with industry at the time of publication. A person is deemed to have a significant interest in a business if the interest represents ownership of \geq 5% of the voting stock or share of the business entity, or ownership of \geq \$5,000 of the fair market value of the business entity, or if funds received by the person from the business entity exceed 5% of the

person's gross income for the previous year. Relationships that exist with no financial benefit are also included for the purpose of transparency. Relationships in this table are modest unless otherwise noted.

According to the ACC/AHA, a person has a *relevant* relationship IF: a) The *relationship or interest* relates to the same or similar subject matter, intellectual property or asset, topic, or issue addressed in the *document*; or b) the *company/entity* (with whom the relationship exists) makes a drug, drug class, or device addressed in the *document*; or c) the *person or a member of the person's household* has a reasonable potential for financial, professional, or other personal gain or loss as a result of the issues/content addressed in the *document*.

*Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry and other entities may apply. †Significant relationship.

ACC indicates American College of Cardiology; AHA, American Heart Association; DCRI, Duke Clinical Research Institute; DSMB, data safety monitoring board; HFSA, Heart Failure Society of America; INTERMACS, Interagency Registry for Mechanically Assisted Circulatory Support; PARENT, Pulmonary Artery Pressure Reduction With Entresto; UCLA, University of California, Los Angeles; and VA, Veterans Affairs.

(Section numbers correspond to the 2013 full-text guideline.)

Table of Contents

Data Supplement A. RCTs and Meta-analyses With Biomarkers (Section 6.3)	3
Data Supplement B. Nonrandomized Trials/ Observational Studies/ Registries for Changes in or Discharge NP Levels in ADHF – Biomarkers (Section 6.3)	
Data Supplement 1. RCTs Comparing ARNI (Section 7.3.2.10)	27
Data Supplement 2. RCTs Comparing RAAS Inhibition (Section 7.3.2.3)	29
Data Supplement 3. RCTs Comparing Pharmacological Treatment for of ARNI With ACE (Section 7.3.2.10)	31
Data Supplement 4. RCTs Comparing Pharmacological Treatment for Stage C HFrEF (Section 7.3.2.11)	33
Data Supplement C. RCTs Comparing Pharmacologic Treatment for HFpEF: Recommendations (Section 7.3.3)	36
Data Supplement D. RCTs Comparing Anemia (Section 9.2)	
Data Supplement E. RCTs Comparing HTN (Section 9.5)	44
Data Supplement F. Nonrandomized Trials for Hypertension (Section 9.5)	50
Data Supplement G. RCTs Comparing Treatment of Sleep Disorders (CPAP makers) (Section 9.6)	
2013 HF Guideline Data Supplement 18. ACE Inhibitors (Section 7.3.2.2)	62
2013 HF Guideline Data Supplement 19. ARBs (Section 7.3.2.3)	65
2013 HF Guideline Data Supplement 20. Beta Blockers (Section 7.3.2.4)	66

Key Search Terms: Heart Failure, Angiotensin Receptor-Neprilysin Inhibitor, Ivabradine, Angiotensin Receptor Blockers, Angiotensin-Converting Enzyme Inhibitors, Beta Blockers, Angioedema, Natriuretic Peptides, Ferric Carboxymaltose, Iron deficiency, hypertension, sleep apnea, natriuretic peptide biomarker.

Master Abbreviation List:

1° indicates primary; 2°, secondary; ~, approximately; 6MWT, 6 min walk test; ACE, angiotensin-converting enzyme; ACEI indicates angiotensin-converting-enzyme inhibitor; ACS, acute coronary syndrome; ADHF, acute decompensated heart failure; ADHERE, Acute Decompensated Heart Failure National Registry; AF, atrial fibrillation; AHI, apneahypopnea index; AHRQ, Agency for Healthcare Research and Quality; AIRE, Acute Infarction Ramipril Efficacy; ALLHAT, Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial; ALT, alanine aminotransaminase; AMI; acute myocardial infarction; APE, acute pulmonary embolism; ARB, angiotensin-receptor blocker; AKI/ARF, acute kidney injury/acute renal failure; ARNI, angiotensin receptor-neprilysin inhibitor; ASA, aspirin; AST, aspartate transaminase; ATLAS, Assessment of Treatment with Lisinopril and Survival; AUC, area under the curve; AV, atrioventricular; ; BEAUTIFUL, Morbidity-Mortality Evaluation of the If Inhibitor Ivabradine in Patients With Coronary Disease and

© 2017 American College of Cardiology Foundation, the American Heart Association, Inc., and the Heart Failure Society of America.

Left-Ventricular Dysfunction; BID, twice a day; BL, baseline; BNP, plasma B-type natriuretic peptide; BP, blood pressure; bpm, beats per minute; BSA, body surface area; CABG, coronary artery bypass graft; CAD, coronary artery disease; CANPAP, Canadian Continuous Positive Airway Pressure for Patients with Central Sleep Apnea and Heart Failure Trial; CCB, calcium channel blockers; CKD, chronic kidney disease; cGMP, cyclic guanosine monophosphate; CHARM, Candesartan in Heart Failure Assessment of Reduction in Mortality and Morbidity; CHD, chronic heart disease; CI, confidence interval; CM, contrast media; CONFIRM-HF, Ferric carboxymaltose evaluation on performance in patients with iron deficiency in combination with chronic heart failure: CONSENSUS Cooperative North Scandinavian Enalapril Survival Study; COPD, chronic obstructive pulmonary disease; CPAP, Continuous positive airway pressure; Cr, creatinine; CRT, cardiac resynchronization therapy; CSA, central sleep apnea; cTnl, cardiac troponin I; CTR, cardiothoracic ratio; CV, cardiovascular; CVA, cerebrovascular accident; CVD, cardiovascular disease; C/W, compared with; DBP, diastolic blood pressure; DM, diabetes mellitus; DOSE-AHF, Diuretic Optimization Strategy Evaluation in Acute HF; DPB, diastolic blood pressure; ECG, electrocardiography; ED, emergency department; EF, ejection fraction; eGFR, estimated glomerular filtration rate: ELAN-HF, European Collaboration on Acute Decompensated Heart Failure: ESRD, end-stage renal disease: EMPHASIS, Eplerenone in Mild Patients Hospitalization and Survival Study in Heart Failure; EQ-5D, EuroQoL five dimensions guestionnaire; ET, ; FAIR-HF, Ferinject Assessment in Patients with Iron Deficiency and Chronic Heart Failure; FCM, ferric carboxymaltose; FU, follow-up; GDEM, guideline-directed evaluation and management; GDMT, guideline-directed management and therapy; GP, ; HCM, ; HDL, high density lipoprotein; HEAAL study, effects of high-dose versus low-dose losartan on clinical outcomes in patients with heart failure; HF, heart failure; HF, DEF, Heart failure with preserved ejection fraction; h/o, history of; HF, EF, Heart failure with reduced ejection fraction; HR, hazard ratio; hs-CRP, high sensitivity Creactive protein; HTN, hypertension; HYVET, Hypertension in the Very Elderly Trial; Hx, history; ICD, implantable cardioverter defibrillator; ID, iron deficiency; IDI, integrated discrimination improvement; IHD, ischemic heart disease; IMPRESS, Comparison of Vasopeptidase Inhibitor, Omapatrilat, and Lisinopril on Exercise Tolerance and Morbidity; I-PRESERVE, Irbesartan in Heart Failure with Preserved Ejection Fraction Study; IQR, interguartile range; ITT, intent to treat; IV, intravenous; KCCQ, Kansas City Cardiomyopathy Questionnaire; LCZ, ; LV, left ventricular; LVD, Left ventricular dysfunction; LVEF, left ventricular ejection fraction; LVEDD; left ventricular end-diastolic dimension; LVH, left ventricular hypertrophy; MACE, major adverse cardiac event; MI, myocardial infarction; MR-proANP, ; MR-proADM, ; MRA, mineralocorticoid receptor antagonists; MTD, maximal tolerated dose: MV, mitral valve; MWT, minute walk test: N/A, not available; NEAT-HFpEF, Nitrate's Effect on Activity Tolerance in Heart Failure With Preserved Ejection Fraction; NEP, neutral endopeptidase; NNH, number needed to harm; NNT, number needed to treat; NP, natriuretic peptide; NRI, net reclassification improvement; NS, nonsignificant; NSTEMI, non-ST-elevation myocardial infarction; NT-proBNP, N-terminal pro-B-type natriuretic peptide; NYHA, New York Heart Association; OCTAVE, The Omapatrilat Cardiovascular Treatment vs. Enalapril; ONTARGET, The Ongoing Telmisartan Alone and in Combination With Ramipril Global Endpoint Trial; OPTIMIZE-HF, Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure; OR, odds ratio; OSA, obstructive sleep apnea; OVERTURE, Omapatrilat Versus Enalapril Randomized Trial of Utility in Reducing Events; PAD, peripheral artery disease; PARADIGM-HF, Prospective Comparison of ARNI With ACE to Determine Impact on Global Mortality and Morbidity in Heart Failure: PARAMOUNT, Prospective Comparison of ARNI With ARB on Management of Heart Failure With Preserved Ejection Fraction; PAP, positive airway pressure; PCI, percutaneous coronary intervention; PCP, Primary Care Physician; PDE, phosphodiesterase; PEP-CHF, Perindopril in Elderly People With Chronic Heart Failure; PGA, patient global assessment; PPM, permanent pacemaker; PSG, polysomnography; PTCA, percutaneous transluminal coronary angioplasty; PONTIAC, NT-proBNP Guided Primary Prevention of CV Events in Diabetic Patients; PRIMA, Can Pro-Brain-Natriuretic Peptide Guided Therapy of Chronic Heart Failure Improve Heart Failure Morbidity and Mortality?: PROTECT, ProBNP Outpatient Tailored Chronic Heart Failure Therapy; pts. patients: PVD, peripheral vascular disease; QoL, guality of life: RAAS, renin-angiotensinaldosterone system; RAS, renin-angiotensin system; RCT, randomized controlled trial; RED-HF, Reduction of events by darbepoetin alfa in heart failure; RELAX, Phosphodiesterase-5 Inhibition to Improve Clinical Status and Exercise Capacity in Heart Failure With Preserved Ejection Fraction; ROC, receiver-operating characteristic; RR, relative risk; SBP, systolic blood pressure; SCr, serum creatinine; SERVE-HF, Adaptive Servo-Ventilation for Central Sleep Apnea in Systolic Heart Failure; SHEP, Systolic Hypertension in the Elderly Program; SHIFT, Systolic Heart Failure Treatment with the If Inhibitor Ivabradine Trial; SIGNIFY, Study Assessing the Morbidity–Mortality Benefits of the If Inhibitor Ivabradine in Patients with Coronary Artery Disease; SOB, shortness of breath; SPRINT, Systolic Blood Pressure Intervention Trial; SR, systematic review; SSS, sick sinus syndrome; STARBRITE, the Strategies for Tailoring Advanced Heart Failure Regimens in the Outpatient Setting; STARS-BNP, Systolic Heart Failure Treatment Supported by BNP; STEMI, ST-elevation myocardial infarction; STOP-HF, St. Vincent's Screening to Prevent Heart Failure; SUPPORT, Supplemental Benefit of ARB in Hypertensive Patients With Stable Heart Failure Using Olmesartan; SURVIVE, Survival of Patients with Acute Heart Failure in Need of Intravenous Inotropic Support; TIA, transient ischemic attack; TIME-CHF, ; TOPCAT, Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist; TRANSCEND, the Telmisartan Randomised Assessment Study in ACE Intolerant Subjects With Cardiovascular Disease; TSAT, transferrin saturation; UA, unstable angina; UL, ; UPSTEP, Use of Peptides in Tailoring Heart Failure Project; VF, ventricular fibrillation; VHD, valvular heart disease VT, ventricular tachycardia; and w/o, without.

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% Cl)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events				
Biomarker Studies Per	Biomarker Studies Pertinent to Stage A / B HF Patients								
PONTIAC Huelsmann et al. 2013 (1) <u>23810874</u> • Medical University of Vienna • Roche Pharma AG	Aim: To assess the effectiveness of neurohumoral therapy for the prevention of cardiac events in pts with type 2 DM with increased biomarker NT- proBNP Study type: RCT Size: 300	Inclusion criteria: Pts with type 2 DM, age ≥18 y, elevated NT-proBNP (≥125 pg/mL) Exclusion criteria: Free of heart disease, chronic infections or malignancies, systemic cortisone treatment, renal replacement therapy, nondiabetic conditions that lowered life expectancy to <1 y and absence of reliable contraception in women of childbearing age	Intervention: Individualized up-titration of RAS antagonists and beta blockers in addition to diabetes treatment (150), treated at cardiology clinic Comparator: "Control" group treated for diabetes, (150), treated at diabetes care units	 <u>1° endpoint</u>: Hospitalization or death due to cardiac disease following 24 mo Results: Significant reduction of 1° endpoint in intervention group (HR: 0.351; 95% CI: 0.127–0.975; p=0.044) <u>1° Safety endpoint</u>: BP was significantly reduced in both intervention and control (p<0.05); heart rate was only reduced in the intensified group (p=0.004) 	 All-cause hospitalizations, HF hospitalizations and unplanned CV hospitalizations or death (p<0.05 reduction) Study limitations: Absence of pt randomization for treatment, pt population mainly Caucasian, statistical analysis done without adjustment of co-variates Pts treated with a RAS antagonist/beta-blocker and the dosage reached higher in intensified group (p<0.0001) No difference in NT-proBNP levels 				
STOP-HF Ledwidge et al. 2013 (2) <u>23821090</u> • Heartbeat Trust, Health Research	Aim: To establish efficacy of BNP screening <u>and</u> collaborative care in at-risk population in reducing newly	Inclusion criteria: Pts ≥40 y, and history of HTN (on meds ≥1 mo), hypercholesterolemi a, obesity, vascular disease including	Intervention: BNP screening at BL and annually and protocol referral for BNP ≥50 pg/mL for echocardiography and collaborative care. (697)	 <u>1° endpoint</u>: LV dysfunction (systolic: LVEF <50% or diastolic: E/E' ratio >15) with or without newly diagnosed HF(with symptoms of HF requiring admission to 	 Emergency hospitalizations for major MACE [40 vs. 22 (0.60 OR; 95% CI: .45-0.81; p=.002)]] CV investigations more likely to be done in the intervention group with BNP levels ≥50 pg/mL Increase in RAAS agents in the 				

Data Supplement A. RCTs and Meta-analyses With Biomarkers (Section 6.3)

Board of the Irish Government; and European Commission Framework Programme. The Heartbeat Trust received unrestricted grants from Pfizer, A. Menarini, Alere, Roche, Takeda, Abbott, Covidien, and Servier.	diagnosed HF and prevalence of significant LV systolic and /or diastolic dysfunction. <u>Study type</u> : RCT (unblinded) <u>Size</u> : 1,374	CAD,, cerebrovascular disease or peripheral vascular disease, DM, arrhythmia therapy, or moderate to severe valvular disease Exclusion criteria: Established LV systolic dysfunction, symptomatic HF, diagnosis compromising survival	<u>Comparator:</u> Usual 1° care (677)	hospital, confirmed by d/c summary) • 59 (8.7 %) vs. 37 (5.3%) (0.55 OR; 95% CI: 0.37– 0.82; p=0.003)	 intervention group In the subgroup with BNP levels ≥50 pg/mL, increase in BNP levels in the intervention group was ~1/2 of that in the control group The results might not be applicable to general population (single center), non-blinding introduces bias. Event rate was lower than expected. Cost-effectiveness unclear. Incremental value of and cut-off of BNP may change in population studied.
Meta-Analyses or SRs	1				
Brunner-La Rocca et al. 2015 (3) <u>264199999</u>	Aim: To assess which HF pts benefit from NT-pro BNP therapy Study type: Meta-Analysis Size: 2,137 pts from 8 NT- proBNP trials	Inclusion criteria: Studies that included individual pt data HF <i>p</i> EF and HFrEF. EF ≤45% Exclusion criteria: Pts with unknown LVEF, STARBRITE study, 1° meta- analyses that aggregated data	Intervention: (NT-pro)BNP-guided therapy and HF/EF (1,731) <u>Comparator</u> : (NT-pro)BNP- guided therapy and HF <i>p</i> EF (301)	 <u>1° endpoint:</u> All-cause mortality and admission for HF Results: Lower mortality in HF/EF with guided treatment (HR: 0.78; 95% CI: 0.62–0.97; p=0.03). Lesser HF admissions in HF/EF (HR: 0.80; 95% CI: 0.67–0.97; p=0.02) 	 NT pro BNP-guided treatment harmful in HF<i>p</i>EF without HTN and in pts with renal failure Limitations: Bias due to exclusion of aggregate data, Lack of specific testing for diagnosis of comorbidities, absence of comorbidity index, insufficient sample size for pts with HF<i>p</i>EF, treatment management aspects unaddressed and statistical tests are not powerful
Don-Wauchope et al. 2015 (4) <u>25448029</u>	Aim: Review evidence of SRs regarding utility of NPs in clinical practice. Study type: Review of SRs	Inclusion criteria: SRs that authors were aware of through their participation in an AHRQ comparative effectiveness review.	Intervention: NP-guided therapy <u>Comparator:</u> Clinically-guided care	 <u>1° endpoint</u> 8 SRs assessed all-cause mortality and "generally found there was a benefit." 4 SRs examined all cause- hospitalization and did not find decrease with NP- 	 Underlying SRs largely comprised analysis of the same RCTs. Results were qualitative.

Xin W. et al. 2015 (5) 24888383	Size: 9 reviews Aim: To assess the effects of NP- guided treatment of chronic HF on outcomes Study type: Meta-analysis Size: 14 studies, 3,004 pts	Exclusion criteria: N/A	Intervention: BNP or NT-proBNP-guided therapy (1,503) Comparator: Clinically guided therapy (1,501)	 guided therapy 4 SRs assessed HF hospitalization and "consistently" found a significant reduction with NP-guided therapy <u>1° endpoints</u>: All-cause mortality, HF hospitalization, all-cause hospitalization, all-cause hospitalization, safety (adverse events) <u>Results</u>: Compared with clinical group, BNP-guided treatment significantly decreased the risk of HF-related hospitalization (RR: 0.79; 95% Cl: 0.63–0.98; p=0.03), although did not significantly affect the risk of all-cause mortality (RR: 0.94, 95% Cl: 0.81–1.08, p=0.39) or all-cause hospitalization (RR: 0.97; 95% Cl: 0.89–1.07; p=0.56). <u>1° Safety endpoint:</u> NP-guided therapy was not associated with increased risk for serious adverse events. 	BNP-guided therapy improved LV systolic function in HF pts (LVEF: weighted mean difference=2.80%, 95% CI: 0.90–4.69%; p=0.01), But did not significantly affect NYHA class or QoLs (p=ns)
Troughton RW et al. 2014 (6) <u>24603309</u>	Aim: To assess the effects of NP- guided treatment of chronic HF on outcomes Study type: Meta-analysis	Inclusion criteria: RCTs reporting all- cause mortality and comparing BNP- guided treatment of HF with clinically guided treatment and 1 study (PROTECT trial) that did not	Intervention: BNP-guided therapy (1,006) <u>Comparator:</u> Clinically guided therapy (994)	 <u>1° endpoint</u>: All-cause mortality Results: All-cause mortality was significantly reduced by NP-guided treatment [HR: 0.62 (0.45–0.86); p=0.004] 	 HF hospitalizations were reduced in the NP-guided group, compared with clinically guided pts [HR: 0.80 (0.67–0.94); p=0.009] as were CV admissions [HR: 0.82 (0.67–0.99); p=0.048] Each of the included RCTs was relatively small and 2 trials did not

	<u>Size:</u> 11 studies, 2,000 pts	report mortality (11 studies, 9 with individual pt data) <u>Exclusion criteria:</u> For 2 studies, data from the 3rd ('usual care') groups were not included.		 Significant interaction between age and treatment efficacy (p=0.028), with a survival benefit for BNP- guided vs. clinical treatment in pts <75 y [HR: 0.62 (0.45– 0.85); p=0.004] but not in pts ≥75 y [HR: 0.98 (0.75–1.3); p=ns] 	provide individual pt data.
De Vecchis et al. 2014 (7) <u>24522083</u>	Aim: To assess the effects of NP- guided treatment of chronic HF on outcomes Study type: Meta-analysis Size: 6 studies, 1,775 pts	 Inclusion criteria RCT to a strategy of titrating drug therapy based on the level of a circulating NP (BNP or NT-proBNP) compared to clinical conventional criteria, and they reported all-cause mortality. Should have included >60 pts and its follow-up should have been longer than 90 d. 	Intervention: BNP or NT-proBNP-guided therapy Comparator: Clinically guided therapy	 <u>1° endpoint</u>: Combined endpoint of all-cause mortality and HF hospitalization <u>Results:</u> NP-guided therapy for outpatients with HF was shown to be associated with a decreased risk of death and HF hospitalizations (OR: 0.64; 95% Cl: 0.43–0.95; p=0.026) 	 Limitations: Each of the included RCTs was relatively small Benefit was not seen in some of the studies
Balion et al. 2014 (8) <u>25074674</u>	Aim: To assess the effects of NP- guided treatment of chronic HF on outcomes Study type: SR Size: 9 RCTs; 2,104 pts	Meta-analysis was not done due to study heterogeneity.	Intervention: BNP or NT-proBNP-guided therapy (1,503) <u>Comparator:</u> Clinically guided therapy (1,501)	 <u>1° Outcome:</u> Review: Overall, there was a wide variation in study design and how parameters were reported including pt selection, BL characteristics, therapy goals, BNP/NT-proBNP cutpoint, and outcome types. The strength of evidence for the outcome of mortality, reported in 7 studies, was found to be low due to inconsistency and 	N/A

				imprecision.	
Savarese et al. 2013 (9) <u>23472172</u>	Aim: To determine whether NP-guided (BNP or NT- proBNP) therapy, compared to clinically guided therapy, improves outcomes Study type: Meta-analysis Size: 12 trials enrolling 2,686 participants (730 in BNP, 1,956 in NT-proBNP related trials)	Inclusion criteria: All randomized trials reporting clinical endpoints (all- cause mortality and/or HF related hospitalization and/or all-cause hospitalization) with comparison of BNP or NT-proBNP guided therapy vs. a control group in chronic HF pts	Intervention: • BNP-guided therapy: BNP-guided: 373 • NT-proBNP guided: 872 Comparator: Clinically guided therapy • BNP group control 357 • NT-proBNP group control 1,084 • Separate analyses on pts ≤ or >75 y using data reported in 3 trials.	 <u>1° endpoints</u> All-cause mortality, all-cause hospitalization, HF hospitalization Results: NP-guided therapy (either BNP or NT-proBNP) significantly reduced all-cause mortality (OR: 0.738; 95% CI: 0.596–0.913; p=0.005) and HF related hospitalization (OR: 0.554; 95% CI: 0.399–0.769; p=0.000), but not all-cause hospitalization (OR: 0.803; 95% CI: 0.629–1.024; p=0.077) 	 When separately assessed, NT-proBNP-guided therapy reduced all-cause mortality (OR: 0.717; 95% CI:0.563–0.914; p=0.007) and HF hospitalization (OR: 0.531; 95% CI: 0.347–0.811; p=0.003), but not all-cause hospitalization (OR: 0.779; CI:0.414–1.465; p=0.438), whereas BNP-guided therapy did not significantly reduce all-cause mortality (OR: 0.814; CI:0.518–1.279; p=0.371), HF related hospitalization (OR: 0.599; 95% CI: 0.303–1.187; p=0.14) or all-cause hospitalization (OR: 0.726; 95% CI:0. 0.509 – 1.035; p=0.077) Analysis from 3 trials showed the composite outcome of all-cause mortality and HF hospitalization was significantly reduced by NP-guided therapy in younger pts (≤75 y) (OR: 0.449; 95% CI: 0.207– 0.973; p=0.043), but not in older pts (>75 y) (OR: 0.800; 95% CI: 0.423–1.513; p=0.5).
Li et al. 2013 (10) <u>23602555</u>	Aim: To assess the effects of NP- guided treatment of chronic HF on all- cause mortality and HF hospitalization	Inclusion criteria Studies with >40 pts and involved comparison of BNP- guided vs. guideline-guided drug therapy of the pts with chronic HF in the outpatient	Intervention: BNP-guided therapy <u>Comparator:</u> Clinically guided therapy	 <u>1° endpoint:</u> Combined end point of all- cause mortality and HF hospitalization Results: Significantly decreased risk of all-cause mortality (RR: 0.83; 95% CI: 0.69–0.99; p=0.035; and HF 	In the subgroup analysis, HF rehospitalization was significantly decreased in the pts <70 y (RR: 0.45; 95% CI: 0.33–0.61; p=0.000; or with BL higher BNP (≥2114 pg/mL) (RR: 0.53; 95% CI: 0.39–0.72; p=0.000)

Felker et al. 2009 (11)Aim: To determine whether titration of therapy based on NP measurements improves mortality in chronic HFInclusion criteria Prospective RCTs of pts with chronic HF randomized pts to a strategy of titrating medical therapy based on the level of a circulating biomarker compared to a parallel control group, reporting all- cause mortalityIntervention: BNP-guided therapy guided therapy1° endpoint: • All-cause mortalityPorapakkham et al. 2010 (12) 20308637Aim: To determine whether BNP guided therapy improves CV outcomes in chronic HFInclusion criteria endical therapy based on the level of a circulating biomarker compared to a parallel control group, reporting all- cause mortalityIntervention: BNP-guided therapy1° endpoint: • All-cause mortalityPorapakkham et al. 2010 (12) 20308637Aim: To determine whether BNP guided therapy improves CV outcomes in chronic HFInclusion criteria Eligible RCTs were those that enrolled >20 pts and involved comparator of BNP- guided drug therapy vs. usual clinical care of the pt with chronicIntervention: BNP-guided therapy1° endpoint: • All-cause mortalityPorapakkham et al. 20308637Aim: To determine whether BNP guided therapy improves CV outcomes in chronic HFInclusion criteria Eligible RCTs were those that enrolled >20 pts and involved comparison of BNP- guided drug therapy vs. usual clinical care of the pt with chronicIntervention: BNP-guided therapy1° endpoint: • All-cause mortality • All-cause mortality • All-cause mortality • All-cause mortality • All-cause morta	91; p=0.004;	rehospitalization (RR: 0.75; 95% CI: 0.62–0.91; p=0.004; in the BNP-guided therapy group.		setting	Study type: Meta-analysis Size: 11 studies, 2,414 pts	
2010 To determine Eligible RCTs were BNP-guided therapy • All-cause mortality (12) 20308637 therapy improves >20 pts and involved CV outcomes in >20 pts and involved Comparator: Clinically Results: CV outcomes in chronic HF guided drug therapy vs. usual clinical care of the pt with chronic BNP-guided therapy Significantly lower risk Study type: of the pt with chronic HF in an outpatient of the pt with chronic HF in an outpatient group compared with t Size: 8 studies; setting setting ontrol group ontrol group	t mortality omarker- HR: 0.69, 36)	 All-cause mortality Results: Significant mortality advantage for biomarker- guided therapy (HR: 0.69, 95% CI: 0.55–0.86) 	BNP-guided therapy <u> Comparator:</u> Clinically	Prospective RCTs of pts with chronic HF randomized pts to a strategy of titrating medical therapy based on the level of a circulating biomarker compared to a parallel control group, reporting all-	Aim: To determine whether titration of therapy based on NP measurements improves mortality in chronic HF Study type: Meta-analysis Size: 6 studies;	(11)
RCTs of NP Guided Therapy in HF	guided group (\dot{R} : 0.52; 95% CI: 0.33–0.82; p=0.005).risk of all- R: 0.76; ; p=0.003)• No reduction in mortality with BNP- guided therapy in pts \geq 75 y (RR: 0.94; 95% CI: 0.71–1.25; p=0.70). • All-cause hospitalization and	All-cause mortality Results: Significantly lower risk of all- cause mortality (RR: 0.76; 95% CI: 0.63–0.91; p=0.003) in the BNP-guided therapy group compared with the	BNP-guided therapy <u> Comparator:</u> Clinically	Eligible RCTs were those that enrolled >20 pts and involved comparison of BNP- guided drug therapy vs. usual clinical care of the pt with chronic HF in an outpatient	To determine whether BNP guided therapy improves CV outcomes in chronic HF <u>Study type:</u> Meta-analysis <u>Size:</u> 8 studies; 1,726 pts	2010 (12) <u>20308637</u>

Troughton et al. 2000 (13) <u>10791374</u>	Aim: To assess the effects of NT- proBNP-guided treatment of chronic HF on outcomes Study type: RCT Size: 69 pts	Inclusion criteria: Ambulatory pts with LVEF <40% and symptomatic HF (NYHA II-IV) Exclusion criteria: Pts with unknown LVEF Follow up :	Intervention: (NT-pro)BNP-guided therapy with a target of NT-proBNP level <200 pmol Comparator: Standardized clinical assessment (clinical group)	 <u>1° endpoints</u>: Death, CV hospitalization and outpatient HF event Results: Fewer CV events (death, hospitals, or HF decompensation) in the NT- proBNP group than in the clinical group (19 vs. 54; p=0.02) 	 Changes in LVEF, QoL, renal function, and adverse events were similar in both groups. N-BNP-guided treatment of HF reduced total CV events, and delayed time to first event compared with intensive clinically guided treatment. NP was reduced significantly and NP guidance changed therapy
STARS-BNP	Aim:	Minimum 6 mo (median 9.5 mo) Inclusion criteria:	Intervention:	 At 6 mo, 27% of pts in the BNP group and 53% in the clinical group had experienced a first CV event (p=0.034). 1° endpoint 	NP guidance changed therapy
Jourdain et al. 2007 (14) <u>17448376</u>	To evaluate the prognostic impact of a therapeutic strategy using plasma BNP <u>Study type</u> : RCT <u>Size</u> : 220 pts	Ambulatory NYHA class II to III pts considered optimally treated <u>Exclusion criteria</u> : N/A <u>Follow up</u> : median 15 mo	BNP-guided therapy Target : BNP <100 pg/mL <u>Comparator</u> : Medical treatment according to either current guidelines (clinical group)	 HF-related death or hospital stay for HF Results: Mean dosages of ACE inhibitors and beta blockers significantly higher in the BNP group (p<0.05), BNP-guided strategy reduced the risk of HF related death or hospital stay for HF (24% vs. 52%, p<0.001), mainly obtained through an increase in ACE inhibitor and beta blocker dosages. 	Unknown whether BNP-guided therapy resulted in reduction in BNP levels
TIME-CHF Pfisterer et al. 2009 (15) <u>19176440</u>	Aim: To compare 18-mo outcomes of N- terminal BNP- guided vs. symptom guided HF therapy	Inclusion criteria: Ambulatory HF pts 60 y with systolic HF (LVEF ≤45%), NYHA class of II or greater, prior HF hospitalization within	Intervention: Uptitration of guideline- based treatments to BNP level of ≤2 times of UL (BNP-guided therapy) Targets:	 <u>1° endpoints</u>: 18 mo survival free of all- cause hospitalizations Results: N-terminal BNP and 	 Survival free of hospitalization for HF was higher among those in the N-terminal BNP-guided group (72% vs. 62%, respectively; HR: 0.68 [95% CI: 0.50–0.92]; p=0.01). N-terminal BNP-guided therapy

	<u>Study type</u> : RCT <u>Size:</u> 499 pts	1 y, and N-terminal BNP level of ≥2 times the upper limit of normal.	NT-proBNP <400 pg/mL if age <75 y, NT-proBNP <800 pg/mL if 75 y Comparator: Uptitration of guideline- based treatments to reduce symptoms to NYHA class of II or less (symptom guided therapy)	 symptom-guided therapy resulted in similar rates of survival free of all-cause hospitalizations (41% vs. 40%, respectively; HR: 0.91 [95% CI: 0.72–1.14]; p=0.39) BNP guidance changed therapy (higher doses of ACE inhibitors, ARB, Beta blockers and higher use of spironolactone) NT-ProBNP levels were not different between groups 	 improved outcomes in pts 60 to 75 y of age but not in those ≥75 y of age (p<0.02 for interaction). QoL improvements were similar in both the N-terminal BNP-guided and symptom guided strategies
BATTLESCARRED Lainchbury et al. 2009 (16) <u>20117364</u>	Aim: to compare the effects of NT- proBNP)-guided therapy with those of intensive clinical management and with usual care Study Type: RCT (Australia hospitals) Size: 364 pts	Inclusion criteria: Pts admitted to a single hospital with HF, NT-proBNP >50 pmoL/l or 400 pg/mL.(included HF <i>p</i> EF)	Intervention: Outpatient post d/c therapy guided by NT-proBNP levels Target: NT-proBNP <150 pmoL/l (1,270 pg/mL) <u>Comparators:</u> Therapy guided by intensive clinical management, <u>or</u> according to usual care	<u>1° endpoints</u> : Mortality Results: 1-y mortality was less in both the hormone (9.1%) and clinically-guided (9.1%) groups compared with usual care (18.9%; p=0.03)	 3 y mortality was selectively reduced in pts ≤75 y receiving hormone guided treatment (15.5%) compared with either clinically managed treatment (30.9%; p=0.048) or usual care (31.3%; p=0.021). NP guidance changed therapy NT-ProBNP levels were not different between groups
Berger et al. 2010 (17) <u>20170790</u>	Aim: To investigate whether the addition of NT- proBNP-guided, intensive pt management to multidisciplinary care improves outcome in pts following hospitalization due to HF	Inclusion criteria: Pts admitted to a hospital with HF, NYHA III or IV on admission, Cardiothoracic Index>0.5 or LVEF <40%	Intervention: Outpatient post discharge discontinue • BM: NT-proBNP-guided, intensive up-titration of medication by HF specialists in high-risk pts. • Target: NT-proBNP (<2,200 pg/mL)	 <u>1° endpoints</u>: Hospitalization Results: Pt management reduced HF hospitalization (488 D) compared with the multidisciplinary care (1254 D) and usual care (1,588 d) groups (p<0.0001) Combined end point of death or HF rehospitalization was lower 	 NT-ProBNP levels were not different between groups: Pt management group had the highest proportion of RAAS inhibition triple-therapy Death rate was similar between the pt management (22%) and multidisciplinary care groups (22%), but was lower compared with the usual care group (39%; vs. pt management: p<0.02; vs. multidisciplinary care: p<0.02)

	Study Type: RCT (8 Viennese hospitals) Size: 278 pts		specialist-therapeutic recommendations and home care by a HF nurse • Usual care	 in the BM (37%) than in the multidisciplinary care group (50%; p<0.05) and in the multidisciplinary care than in the usual care group (65%; p=0.04) NT-ProBNP levels were lowered in guided pt management arm 	
PRIMA Eurlings et al. 2010 (18) <u>21144969</u>	Aim: To assess whether management by an individualized NT- proBNP target would lead to improved outcome compared with HF management guided by clinical assessment alone Study Type: RCT Size: 345 pts	Inclusion criteria: Hospitalized HF pts with for decompensated, symptomatic HF with NT-proBNP levels >1,700 pg/mL at admission (included HF <i>p</i> EF)	Intervention: After discharge discontinue out pt management guided by an individually set NT- proBNP (n=174) defined by the lowest level at discharge or 2 wk thereafter. Comparators: Clinically-guided outpatient management (n=171)	<u>1° endpoints:</u> Number of d alive outside the hospital after index <u>Results:</u> _Management guided by NT- proBNP target did not significantly improve the 1° endpoint p=0.49)	 In the NT-proBNP-guided group mortality was lower, as 46 pts died (26.5%) vs. 57 (33.3%) in the clinically guided group, but this was not statistically significant (p=0.21) Individualized NT-proBNP target increased the use of HF medication (p=0.006)
SIGNAL HF Trial Persson et al. 2010 (19) <u>20876734</u>	Aim: To investigate if NT- proBNP-guided therapy in HF pts in 1° care would improve clinical outcomes over and above treatment according to guidelines <u>Study Type:</u> RCT (Sweden 1° care centers)	Inclusion criteria: Ambulatory HF pts NYHA class II-IV, LVEF <50% and NT-proBNP levels males >800, females >1,000 ng/	 Intervention: Structured treatment of HF according to guidelines with or without NT-proBNP monitoring Target: At least a 50% reduction from BL NT- proBNP 	1° endpoints: Composite endpoint of d alive, d out of hospital and symptom score Results: There were no differences between the groups concerning either the 1° endpoint (p=0.28) or its components (CV) death, p=0.93; CV hospitalization, p=0.88; or symptom score, p=0.28	• Treatment doses of beta blockers and RAS blockers were markedly increased towards target doses a similar degree in both groups

STARBRITE Trial Shah et al. 2011 (20) <u>21807321</u>	Size: 252 pts Aim: Whether outpatient diuretic management guided by BNP and clinical assessment better compared with clinical assessment alone Study Type: Multicenter (3) RCT Size: 130	Inclusion criteria Hospitalized HF pts with LEVF ≤35% Exclusion criteria: Serum creatinine >3.5 mg/dL and ACS	Intervention: Outpatient post discharge BNP and clinical assessment guided therapy Comparator: Clinical assessment alone.	1° endpoints: Composite endpoint of d alive and d out of hospital, Results: No significant difference HR: 0.72; 95% CI: 0.41–1.27; p=0.25	 Change in serum creatinine, or change in SBP not different BNP strategy pts received significantly more ACE inhibitors, beta blockers
PROTECT Study Gaggin et al. 2012 (21) 22858078	Aim: Whether elders benefit from NP- guided HF care Study Type: Single center RCT Size: 151	Inclusion criteria Chronic HF pts with LV systolic dysfunction	Intervention: Management guided by NT- proBNP with a goal to lower NT-proBNP ≤1000 pg/mL over 10 mo Comparator: Standard of care	1° endpoints: Total CV events in 2 age categories 75 and ≥75 y Results: Pts ≥75 y with NT-proBNP management had lowest rate of CV events (1.76 events per pt with standard of care vs. 0.71 events per pt with NT-proBNP guide, p=0.03)	 Improvement in QoL, LVEF, and indices of LV volume with guided approach NP guidance changed therapy: greater use of aldosterone antagonists and lesser use of loop diuretics in the guided therapy group (no difference in ACE inhibitors or beta blockers)
UPSTEP-study group Karlstrom et al. 2011 (22) 21715446	Aim: To determine whether BNP- guided HF treatment improves morbidity and/or mortality	Inclusion criteria Ambulatory HF NYHA II-IV, LVEF <40% and elevated BNP levels	Intervention: BNP-guided (BNP) with a goal <150 or 300 ng/L for elderly <u>Comparator:</u> Conventional (CTR) HF treatment	<u>1° endpoints:</u> Combined death and worsening/hosp for HF <u>Results:</u> No significant differences 1° outcome (p=0.18)	 No differences for d out of hospital, and younger vs. elderly. Subgroup analysis: improved survival (p<0.0001 for the 1° outcome) among responders with >30% decrease in BL BNP value vs. nonresponders.

Maisel et al. 2002 (23) <u>12124404</u>	Study Type: Multicenter RCT- probe design Size: 279 Aim: To validate and characterize the use of BNP in the diagnosis of HF in pts with dyspnea Study type: Prospective, blinded, diagnostic accuracy study Size: 1,856	Inclusion criteria: Pts who came to the emergency department with acute dyspnea Exclusion criteria: Age <18 y and those whose dyspnea was clearly not secondary to HF (i.e., those with trauma or cardiac tamponade), acute myocardial infarction, unstable angina, or renal failure	Intervention: Comparisons of BNP values among diagnostic groups including HF and non HF pts Comparator: Non-HF pts such as pulmonary disease, cor pulmonale	<u>1° endpoint:</u> Diagnostic accuracy of BNP at a cutoff of 100 pg/mL was 83.4%. The negative predictive value of BNP <50 pg/mL was 96%. <u>Secondary endpoint :</u> In multiple logistic-regression analysis, measurements of BNP added significant independent predictive power to other clinical variables in models predicting which pts had HF	•Used in conjunction with other clinical information, rapid measurement of BNP is useful in establishing or excluding the diagnosis of acute HF failure in pts with acute dyspnea
van Kimmenade et al. 2006 (24) <u>16860029</u>	Aim: To analyze the role of NT-pro-BNP in diagnosis of HF in pts presenting with dyspnea, the so- called natriuretic peptide gray zone. NT-pro-BNP concentrations, clinical characteristics, and 60-d mortality were studied in acutely dyspneic pts from an international	Inclusion criteria: Acutely dyspneic pts Exclusion criteria: With trauma or cardiac tamponade), acute myocardial infarction, unstable angina, or renal failure	Intervention: Comparisons of NT-pro- BNP among diagnostic groups including HF and non-HF pts <u>Comparator</u> : Non-HF pts such as pulmonary disease, cor pulmonale	<u>1° endpoint:</u> Subjects with HF and diagnostically elevated NT- pro-BNP concentrations had the highest mortality rates, subjects without HF and NT- pro-BNP concentrations < 300 ng/L had the lowest mortality rates, and subjects with gray- zone NT-pro-BNP had intermediate outcomes, irrespective of their final diagnoses.	•Adding specific clinical information to NT-pro-BNP improves diagnostic accuracy in subjects with intermediate NT-pro-BNP concentrations. Mortality rates in subjects with intermediate NT-pro- BNP concentrations are lower than in those with NT-pro-BNP concentrations diagnostic for HF but are higher than in subjects with NT-pro-BNP concentrations less than the gray zone

	multicenter study				
	Study type: Prospective, blinded, diagnostic accuracy study Size: 1,256				
Maisel et al. 2004 (25) <u>15364340</u>	Aim: To examine the relationships among BNP levels and HF severity, clinical decision making, and outcomes Study type: Multicenter, prospective, blinded, diagnostic accuracy study Size: 464	Inclusion criteria: Pts over the age of 18 y presenting to the ED with HF and who received treatment in the ED or hospital admission for HF were included. Exclusion criteria: Current MI or ACS with ST-segment deviation of ≥1 mm, renal failure requiring dialysis, or pts with a baseline BNP concentration of ≤100 pg/mL were excluded	Intervention: Physicians were blinded to the actual BNP level and subsequent BNP measurements. Comparator: Comparison between severity of HF determined by physicians or BNP and outcomes	<u>1° endpoint:</u> ED doctor's intention to admit or discharge a pt had no influence on 90-d outcomes, while the BNP level was a strong predictor of 90-d outcome. The 90-d combined event rate (HF visits or admissions and mortality) in the group of pts admitted with BNP <200 pg/mL and >200 pg/mL was 9% and 29%, respectively (p=0.006).	 In pts presenting to the ED with HF, there is a disconnect between the perceived severity of HF by ED physicians and severity as determined by BNP levels. The BNP levels can predict future outcomes and thus may aid physicians in making triage decisions about whether to admit or discharge pts. Emerging clinical data will help further refine biomarker-guided outpatient therapeutic and monitoring strategies involving BNP.
O'Connor et al. 2010 (26) <u>20185037</u>	Aim: To identify high-risk HF pts at hospital discharge Study type: Predictive modeling using variables obtained during hospitalization in the ESCAPE trial	Inclusion criteria: hospitalized with severe HF, LVEF ≤30%, SBP ≤125 mmHg, Exclusion criteria: creatinine >3.5 mg/dL, prior inotrope use	Derivation cohort: ESCPAPE trial, n=423 <u>Validation cohort</u> : FIRST trial, n=471	 <u>1° endpoint</u>: 6-mo mortality and death or rehospitalization rates (64%) Multivariate discharge predictors of death included: BNP, per doubling (HR: 1.42), cardiac arrest or mechanical ventilation, yes/no (HR: 2.54), BUN, per 20 mg/dL increase (HR: 1.22) and sodium, per unit mEq/L increase (HR: 0.93) 	 A simplified discharge score discriminated mortality risk from 5% (score=0) to 94% (score=8). Bootstrap validation demonstrated good internal validation for the model (c-index 0.78) Limitations: ESCAPE represented pts with severe LV dysfunction and advanced symptoms (not the general population of acute HF) managed at experienced centers; exclusion of pts with characteristics

<u>Size</u> : 423				known to be associated with worse outcomes (e.g., creatinine >3.5 mg/dL, requiring inotropes)
-------------------	--	--	--	---

Search Terms and Date: natriuretic peptides, heart failure, human, last 5 years. Last search done on April 18, 2016.

Data Supplement B. Nonrandomized Trials/ Observational Studies/ Registries for Changes in or Discharge NP Levels in ADHF – Biomarkers (Section 6.3)

Study Acronym; Author; Year Published	Aim of Study; Study Type;	Patient Population	Primary Endpoint and Results (P values, OR or RR & 95 % CI)	Summary / Conclusion / Comments
	Study Size (N)			
Bayés-Genís et al. 2005 (27) <u>15948093</u>	Aim: Percentage of NT- proBNP reduction during admission and its prognostic significance Study type: NR Prospective cohort Size: 74 pts	Inclusion criteria: Pts diagnosed with acute HF in emergency department and who had follow-up evaluation for 6 & 12 mo after admission Follow up :12 mo	 <u>1° endpoints</u>: Percent reduction in NT-proBNP and its association with CV mortality <u>Results</u>: The area under the ROC curve for % NT-proBNP reduction to predict CV death was 0.78 (95% CI: 0.66–0.90; p=0.002) 	 30% NT-proBNP reduction percentage cutoff value had 75% accuracy for the identification of high-risk pts and was the only variable that was associated with CV death in multivariate analysis (OR: 4.4; 95% CI: 1.12–17.4; p=0.03). Study relatively old and small
Verdiani et al. 2008 (28) <u>18545069</u>	Aim: To evaluate the prognostic significance of NT-proBNP % reduction during ADHF Study type: Prospective cohort Size: 120 pts	Inclusion criteria: Pts consecutively admitted with ADHF Follow up: 6 mo	 <u>1° endpoint</u> Percent reduction in NT-proBNP and its association with CV mortality <u>Results:</u> In ROC, the mean AUC for NT-ProBNP % reduction was 0.63 (95% CI: 0.51–0.75; p=0.04) for the composite endpoint (death or readmission), and 0.81 (95% CI: 0.65–0.97, p=0.01) for CV mortality at risk of events. 	 NT-ProBNP reduction percentage <30% was the best cut off for the identification of pts Study relatively old and small

Bettencourt et al. 2004 (29) <u>15451800</u>	Aim: To compare 18 mo outcomes of NT-BNP- guided vs. symptom guided HF therapy Study type: Prospective cohort single center study Size: 182 pts	Inclusion criteria: Consecutive ADHF pts defined by ESC or Framingham criteria Follow up: 6 mo	1° endpoints: • Death or readmission Results: • Pts were classified into 3 groups: (1) decreasing NT-proBNP levels by at least 30% (n=82), (2) no significant modifications on NT-proBNP levels (n=49), and (3) increasing NT-proBNP levels by at least 30% (n=25). • Among the 64 pts discharged without volume overload, a positive association between change in NT-proBNP and outcome was observed (HR: 2.66; 95% CI: 0.77–9.18 for change <30%; HR: 16.04; 95% CI: 9.49 – 52.02 for increase ≥30% compared with those with decreasing NT-proBNP by at least 30%	 Pts demonstrating a ≥30% increase in NT-proBNP levels during the course of their admission had the most adverse prognosis Study relatively old and small
Kociol et al. 2013 (30) <u>23250981</u>	Aim: Examine_relationship between markers of decongestion and symptom relief and clinical outcomes Study type: retrospective analysis of the RCT, DOSE- AHF Size: 308 pts	Inclusion criteria: Pts enrolled in DOSE-AHF Follow up: 60 d	 <u>1° endpoints</u>: Time to death, first rehospitalization or emergency department visit <u>Results</u>: Of the weight loss, fluid loss, and NT-proBNP reduction, only % reduction in NT-proBNP was significantly associated with symptom relief (r=0.13; p=0.04). Reduction in NT-proBNP Associated with better outcome (NT-proBNP HR: 0.95; 95% CI: 0.91–0.99 per 10% reduction). 	 Favorable changes in each of the 3 markers of decongestion were associated with improvement in time to death, rehospitalization, or emergency department visit at 60 d
Kociol et al. 2011 (31) <u>21743005</u>	Aim: To examine if admission, discharge, or change from admission to discharge BNP measure is the most important predictor of long-term outcomes	Inclusion criteria: Linked pts ≥65 y of age from hospitals in OPTIMIZE-HF to Medicare claims Follow up: 1 y	• The discharge BNP had the best performance and was the most important characteristic for predicting 1 y mortality (HR for log transformation: 1.34; 95% CI: 1.28–1.40) and 1 y death or rehospitalization (HR: 1.15; 95% CI: 1.12– 1.18).	 Compared with a clinical variables, discharge BNP model improved risk reclassification and discrimination in predicting each outcome (1 y mortality: NRI: 5.5%, p<0.0001; IDI: 0.023, p<0.0001; 1-y mortality or rehospitalization: NRI: 4.2%, p<0.0001; IDI: 0.010, p<0.0001)

Flint KM et al. 2014	Study type: Retrospective analysis from OPTIMIZE HF Trial Size: 7,039 pts Aim:	Inclusion criteria:	1° endpoints:	Discharge BNP had the greatest
(32) <u>24922626</u>	To examine if admission, discharge, or change from admission to discharge BNP measure is the most important predictor of outcomes <u>Study type</u> : Retrospective analysis from VA database <u>Size:</u> 109,875 pts	All hospital discharges with a 1° diagnosis of HF in the Veterans Affairs Health Care System from 2006 to 2009. Follow up: 30 d	 30 d readmission rate for HF Results: 30 d HF readmission was associated with elevated admission BNP, elevated discharge BNP, and smaller percent change in BNP from admission to discharge. Pts with a discharge BNP ≥1,000 ng/L had an unadjusted 30 d HF readmission rate over 3 times as high as pts whose discharge BNP was ≤200 ng/L (15% vs. 4.1%). 	 Discharge DNF flad the greatest effect (C-statistic, 0.639–0.664 [p<0.0001]; NRI, 9% [p<0.0001]). Large sample size
ELAN-HF Score Salah et al. 2014 (33) 24179162	Aim: To examine if admission, discharge, or change from admission to discharge BNP measure is the most important predictor of outcomes Study type: Individual pt data meta- analyses of prospective cohort studies Size: 1,301 pts	Inclusion criteria: Pts from 7 prospective cohorts with pts admitted because of clinically validated ADHF, discharged alive, and NT-proBNP measurements available at admission and at discharge Follow up: 180 d	 <u>1° endpoints:</u> All-cause mortality and a composite of all-cause mortality and/or first readmission for CV reason within 180 d after discharge <u>Results:</u> NT-proBNP levels at discharge and the changes in NT-proBNP during hospitalization yielded the best C-statistic (AUC: 0.78; 95% CI: 0.74–0.82). 	 In pts hospitalized for ADHF, the addition of the discharge NT- proBNP values as well as the change in NT-proBNP to known risk markers, generates a relatively simple yet robust discharge risk score that importantly improves the prediction of adverse events

	A	Leel at a distance		
Cohen-Solal et al. 2009	Aim:	Inclusion criteria:	<u>1° endpoints:</u>	Pts with lowered BNP on treatment
(34)	Examine whether	Of 1,327 SURVIVE pts, this	All-cause mortality and a composite of all-	for ADHF had reduced mortality
<u>19539144</u>	decreases in BNP	analysis included 1,038 who	cause mortality and/or first readmission for	risks (31- and 180-d) compared to
	levels during the first	had BNP samples at both	CV reason within 180 d after discharge	those with little or no BNP decrease
	few d of hospitalization	BL and d 5		
	were associated with		Results:	
	greater survival in pts		 A pt was classified as a "responder" if the 	
	with ADHF	<u>Follow up</u> : 180 d	follow-up BNP level was ≥30% lower than	
			BL BNP	
	Study type:		• Short-term 30 d mortality risk reduction was	
	Retrospective analysis		67% in d 5 BNP responders compared with	
	of SURVIVE		nonresponders, whereas long-term (180-d)	
			all-cause mortality risk reduction was 47%	
	Size:			
	1,327 pts			
Logeart et al. 2004	Aim:	Inclusion criteria:	1° endpoints:	High predischarge BNP assay is a
(35)	To determine the value	Serial BNP measurements	Combined death or first re-admission for HF	strong, independent marker of
14975475	of BNP predicting	were performed from		death or readmission after
	post-discharge	admission to discharge in 2	Results:	decompensated HF, more relevant
	outcome of pts	samples of consecutive pts	The predischarge BNP assay had the best	than common clinical or
	admitted for ADHF	···	discriminative power (AUC for ROC=0.80)	echocardiographic parameters and
			and remained the lone significant variable in	more relevant than changes in BNP
	Study type:		multivariate analysis (HR: 1.14; 95% CI:	levels during acute cares
	Prospective cohort		1.02–1.28; p=0.027	
			1.02 1.20, p 0.021	 Study relatively old and small
	Size:			
	105 pts			
O'Brien et al. 2003	Aim:	Inclusion criteria:	1° endpoints:	Plasma NT-proBNP measured pre-
(36)	To determine the value	NT-proBNP was measured at	Combined death or HF	discharge provides useful
12921811	of BNP predicting	admission in 96 pts		prognostic information following
	post-discharge	hospitalized with acute LVF	Results:	hospitalization with acute LVF.
	outcome of pts		Only pre-discharge plasma NT-proBNP (OR:	- p
	admitted for ADHF	<u>Follow up</u> : 180 d	15.30; 95% CI: 1.4–168.9], p=0.026) was	 Study relatively old and small
		`	independently predictive of the composite	
	Study type:		endpoint. The AUC ROC curve for pre-	
	Prospective cohort		discharge NT-proBNP was superior to that	
			for admission NT-proBNP for prediction of	
	Size:		death or HF (AUC ROC 0.87 cf 0.70), for	
	96 pts		death (0.79 cf 0.66), LVF hospitalization	
	30 pis			
			(0.78 cf 0.70) or HF as an outpatient (0.71	

		cf 0.61	
Study type: Observational study within a randomized trial	Inclusion criteria: Ischemic CM, EF<45%, chronic stable CHF, NYHA II-III or prior IIIV	<u>1° endpoint:</u> Association of plasma N-BNP and adrenomdeullin with mortality and HF events at 18 mo	 NT-proBNP and adrenomedullin levels are independently associated with outcome in pts with heart failure from an ischemic cardiomyopathy
<u>Size:</u> 297	Exclusion criteria: Current NYHA IV, HR<50 bpm, BP<90 or >160/100, coronary event/procedure last 4 weeks, IDDM, CKD, hepatic/renal disease, sick sinus syndrome, 2 nd or 3 rd degree heart block, treatment with beta-blocker, beta-agonist or verapamil	 <u>Results:</u> Above median proBNP increased risk of mortality (HR: 4.7; Cl 2–10.9) and HF admission (HR: 4.7; Cl: 2–10) Above median adrenomedullin increased risk of mortality (HR 3.9,Cl 1.8-8.7) and HF admission (HR 2.4, Cl 1.3-4.5) Associations persist in multivariable modeling 	cardionyopathy
Study type: Retrospective, observational <u>Size</u> : 558	Inclusion criteria: Chronic systolic HF >3 mo duration, stable medical therapy, LVEF<50%, NYHA class I-III, followed in outpatient HF clinic at a single center who had BNP obtained at clinic visit	 <u>1° endpoint:</u> Prevalence, clinical characteristics, and characteristics of a BNP<100 pg/mL in a HF clinic population <u>Results:</u> 21% of symptomatic HF pts had BNP <100 pg/mL Characteristics associated with this 	 A sizeable minority (21%) of ambulatory pts with chronic HF have a BNP <100 pg/mL This phenotype (HF with non- diagnostic BNP) is associated with identifiable clinical characteristics
	Exclusion criteria: Congenital heart disease, cardiac transplant, primary valvular disease, active ischemia requiring urgent revascularization	phenotype include younger age, female gender, nonischemic etiology, better preserved cardiac and renal function, less have atrial fibrillation	
Study type: Review paper regarding utility of NT-proBNP testing for diagnosis or exclusion of HF in pts with acute HF Size:	Inclusion criteria: Studies using NT-proBNP assays used commercially Exclusion criteria: N/A	 <u>1° endpoint</u>: N/A <u>Results:</u> NT-proBNP had comparable sensitivity/specificity to BNP for diagnosis of acute HF in dyspneic pts NT-proBNP testing may be superior to 	 NT-proBNP testing can help with the diagnosis and triage of the patients with acute dyspnea."
	Observational study within a randomized trial Size: 297 Study type: Retrospective, observational Size: 558 Study type: Review paper regarding utility of NT-proBNP testing for diagnosis or exclusion of HF in pts with acute HF	Observational study within a randomized trialIschemic CM, EF<45%, chronic stable CHF, NYHA II-III or prior IIIVSize: 297Exclusion criteria: Current NYHA IV, HR<50 bpm, BP<90 or >160/100, coronary event/procedure last 4 weeks, IDDM, CKD, hepatic/renal disease, sick sinus syndrome, 2 nd or 3 rd degree heart block, treatment with beta-blocker, beta-agonist or verapamilStudy type: Retrospective, observationalInclusion criteria: Chronic systolic HF >3 mo duration, stable medical therapy, LVEF<50%, NYHA class I-III, followed in outpatient HF clinic at a single center who had BNP obtained at clinic visitSize:Study type: Review paper regarding utility of NT-proBNP testing for diagnosis or exclusion of HF in pts with acute HFInclusion criteria: Studies using NT-proBNP assays used commerciallySize:Size:MA	Study type: Inclusion criteria: 1et (Separational study) Observational study Ischemic CM, EF<45%,

			clinical assessment in diagnosing HF	
Santaguida et al. 2014 (40) <u>25052418</u>	Study type: Systematic review Size: 7 publications included	Inclusion criteria: Study assessing incremental value of BNP or NT-proBNP for predicting morbidity and mortality in acute decompensated HF Exclusion criteria: Studies of stable HF; natriuretic peptide could not be included in base model to allow assessment of incremental value	 <u>1° endpoint:</u> BNP or NT-proBNP improved prognostic model performance for mortality as assessed by discrimination and or likelihood statistics <u>5 BNP publications consistently predicted</u> all-cause mortality in short (3–6 mo) and long (9,12 mo) beyond base model but not all statistically significant Two NT-proBNP publications both showed incremental value at 22 mo and 6.8 y with 1 being statistically significant 	Clinical heterogeneity precluded formal meta-analysis
Hill et al. 2014 (41) <u>24957908</u>	Study type: Systematic review Size: 76 publications included (37 BNP alone, 25 NT- proBNP alone, 14 both)	 Inclusion criteria: Age >18 y presenting to ED or urgent care center with signs/symptoms suggestive acute HF English language articles from 1989-2012 FDA-approved assays Exclusion criteria: Studies with pts who had conditions that may impact NP levels (transplant, HCM, valvular) 	 <u>1° endpoint</u>: Test performance characteristics <u>Results:</u> BNP pooled sensitivity=95%, 95% CI: 93– 97%), specificity 67% (58–75%) NT-proBNP pooled sensitivity 91% (95% CI: 88–93), specificity 67% (50–80%) 	 Both BNP and NT-proBNP had high sensitivity but low specificity Overall strength of evidence for sensitivity and all decision cutpoints for both peptides was high; strength of evidence for specificity rated as moderate. Both BNP and NT-proBNP performed well to rule out, but less well to rule in, for the diagnosis of heart failure among patients presenting to the ED or urgent care centers.
Zaphiriou et al. 2005 (42) <u>15921792</u>	Study type: Diagnostic accuracy study (observational) Size: 306 pts	Inclusion criteria: Pts with new symptoms suggestive of HF referred by GP to rapid access HF clinics at 5 centers in UK between 201 and 2003	 <u>1° endpoint:</u> Sensitivity, specificity, PPV, NPV, LR, AUC for diagnosis of HF <u>Results:</u> 104 (34%) of pts had HF 	 2 of 5 sites withdrew after recruiting 18 and 14 pts Both BNP and NT-proBNP are useful for ruling out HF in pts presenting to PCP with possible HF symptoms

		Exclusion criteria: None listed	 AUC BNP 0.84 (95% CI: 0.79–0.89), Nt-proBNP 0.85 (0.81–0.9) BNP: NPV: 0.87, PPV: 0.59 NT-proBNP NPV: 0.97, PPV: 0.44 	
Son et al. 2012 (43) <u>22564550</u>	Study type: Observational, decision making model using rough set and decision tree approaches Size: 159 subjects (71 HF, 88 control)	 Inclusion criteria: ED presentation for dyspnea (HF vs. Noncardiac control) Complete medical records Exclusion criteria: HF excluded if other diagnosis made 	<u>1° endpoint</u> : HF diagnosis <u>Results:</u> NT-proBNP was one of 6 variables identified in decision-tree rough set and one of 4 variables in logistic regression model	 NT-proBNP identified as a critical variable for decision making of HF in pts with dyspnea presenting to ED
Kelder et al. 2011 (44) <u>22104551</u>	Study type: Cross-sectional, diagnostic accuracy (observational) Size: 721 subjects	Inclusion criteria: Pts presenting with signs/symptoms of HF who were referred to 1 of 8 rapid access clinics in the Netherlands Exclusion criteria: Known, established HF Acute HF requiring immediate therapeutic intervention	<u>1° endpoint:</u> Diagnosis of HF <u>Results:</u> • 207/721 (29%) had HF • C-statistic without proBNP =0.83 • C-statistic with proBNP =0.86 NRI 69%	• NT-proBNP had utility beyond the history and physical for diagnosing HF among primary care outpatients presenting with signs/symptoms of HF
Booth et al. 2014 (45) <u>24969534</u>	Systematic review Systematic review Size: 12 BNP publications; 20 NT-proBNP publications	Inclusion criteria: • Pts presenting with signs or symptoms of HF or were at risk of HF a time of presentation • Primary care setting Exclusion criteria: Studies with subjects with: • Age <18 y • Acute HF • Known exacerbation of chronic stable HF	 <u>1° endpoint:</u> Diagnostic accuracy of BNP or NT-proBNP <u>Results:</u> BNP pooled sensitivity (lowest cutpoint 0.85, optimal 0.8, manufacturer 0.74) and specificity (0.54, 0.5, 0.58, respectively) NT-proBNP pooled sensitivity (lowest cutpoint 0.90, optimal 0.86, manufacturer 0.82) and specificity (0.5, 0.58, 0.58, respectively) 	 Both BNP and NT-proBNP have good diagnostic utility for diagnosing HF in the primary care setting in those with signs/symptoms of HF or at risk of developing HF Tests have better sensitivity than specificity Authors felt that it was unlikely that further studies will change these conclusions

		 Conditions that may interfere with NP levels (heart transplant, obesity, HCM, valvular lesion) 		
Dao et al. 2001 (46) <u>11216950</u>	Study type: Observational, convenience sample at 1 VA urgent care center Size: 250	 Inclusion criteria: SOB as prominent complaint Exclusion criteria: Dyspnea clearly not from HF ACS (unless predominant presentation was HF 	 <u>1° endpoint:</u> Diagnostic utility of point-of-care BNP for diagnosis of HF <u>Results:</u> BNP C-statistic =0.98 Treating physician C statistic =0.88 BNP remained independently associated with HF diagnosis in multivariable model beyond H+P, xray, ECG 	 BNP had diagnostic utility for HF diagnosis in the urgent care setting
Davis et al. 1994 (47) <u>7905953</u>	Aim: Assessed value of ANP and BNP in pts presenting with dyspnea Study type: Observational Size: 52	Inclusion criteria: Suspected HF among elderly pts presenting with acute dyspnea requiring admission Exclusion criteria: Pneumonia, pulmonary thromboembolism, or pneumothorax	1° endpoint: Strong negative correlations between LVEF and log BNP (r=-0.7; p<0.001) and log ANP (r=-0.59; p<0.001).	 One of the original studies that showed that plasma BNP was raised in dyspneic pts with HF But not in acutely breathless pts with lung disease Rapid BNP assays may assist in the diagnosis of pts with acute dyspnea
Cheng et al. 2001 (48) <u>11216951</u>	52 <u>Aim</u> : To determine if BNP levels predict outcomes of pts admitted with decompensated HF <u>Study type</u> : Observational <u>Size</u> : 72	Inclusion criteria: Pts admitted with decompensated NYHA class III to IV HF, measuring daily BNP levels Exclusion criteria: Lack of levels	concentration. 1° endpoint: Association between initial BNP and the predischarge or premoribund BNP measurement and subsequent death and 30-d readmission Results: In pts surviving hospitalization, BNP discharge concentrations were strong predictors of subsequent readmission (area under the receiver operator curve of 0.73).	 In pts admitted with decompensated HF, changes in BNP levels during treatment are strong predictors for mortality and early readmission. BNP levels might be used successfully to guide treatment of pts admitted for decompensated HF
Fonarow et al. 2008 (49) <u>18178412</u>	Aim: To determine additive prognostic value of	Inclusion criteria: Hospitalizations for HF from April 2003 to December	<u>1° endpoint:</u> BNP above the median and increased Tn were associated with significantly increased	 Admission BNP and cardiac Tn levels are significant, independent predictors of in-hospital mortality in

	admission BNP and Tn levels in acutely decompensated HF <u>Study type</u> : Registry analysis <u>Size</u> : 48,629	2004 entered into ADHERE were analyzed. BNP assessment on admission was performed in 48,629 (63%) of 77,467 hospitalization episodes <u>Exclusion criteria</u> : Absence of BNP levels	risk of in-hospital mortality (OR: 2.09 and 2.41 respectively, each p<0.0001).	acutely decompensated HF.
Zairis et al. 2010 (50) <u>19157603</u>	Zairis et al. 2010 <u>Aim</u> : In (50) To investigate the C		<u>1° endpoint:</u> Cardiac mortality by 31 d <u>Results:</u> There was a significant gradual increased risk of 31-d cardiac death with increasing in the number of elevated biomarkers (p<0.001). By multivariate Cox regression analysis, elevated serum levels of BNP (p=0.002), cTnl (p<0.001) and hs-CRP (p=0.02) were independent predictors of the study end point.	 In pts hospitalized for acute decompensation of severe (NYHA III/IV) low-output HF, BNP, cTnI and hs-CRP upon admission offers enhanced early risk stratification.
Peacock et al. 2008 (51) <u>18480204</u>	Aim: Describe the association between elevated cardiac troponin levels and adverse events in hospitalized pts with acute decompensated HF Study type: Registry analysis	Inclusion criteria: Hospitalizations for acute decompensated HF between 2001 and 2004 in ADHERE. Entry criteria included a troponin level that was obtained at the time of hospitalization Exclusion criteria: Pts with a serum creatinine level ≥ 2.0 mg per deciliter	 <u>1° endpoint:</u> Overall, 4,240 pts (6.2%) were positive for troponin. <u>Results:</u> Pts who were positive for troponin had lower SBP on admission, a lower EF, and higher in-hospital mortality (8.0% vs. 2.7%, p<0.001) than those who were negative for troponin. The adjusted odds ratio for death in the group of pts with a positive troponin test was 2.55 (95% CI: 2.24–2.89; p<0.001) 	 In pts with acute decompensated HF, a positive cardiac troponin test is associated with higher in-hospital mortality, independently of other predictive variables.

	<u>Size</u> : 67,924	(177 micromol per liter).		
Lee et al. 2012 (52) <u>22665814</u>	Aim: To derive and validate a model for acute HF mortality applicable in the ED. Study type: Multicenter Registry analysis Size: 12,591	Inclusion criteria: Population-based random sample of 12,591 pts presenting to the ED from 2004 to 2007 Exclusion criteria: No lab availability	 <u>1° endpoint</u>: Death within 7 d of presentation <u>Results:</u> Mortality risk increased with higher triage heart rate (OR: 1.15; [95% CI: 1.03–1.30] per 10 beats/min) and creatinine concentration (OR: 1.35; [CI: 1.14–1.60] per 1 mg/dL [88.4 micro mol/L]), and lower triage SBP (OR: 1.52 [CI: 1.31–1.77] per 20 mm Hg) and initial oxygen saturation (OR, 1.16 [CI: 1.01–1.33] per 5%). 	• A multivariate index comprising routinely collected variables stratified mortality risk with high discrimination in a broad group of pts with acute HF presenting to the ED.
Dhaliwal et al. 2009 (53) <u>19398076</u>	Aim: Compare the relationship between absolute and relative changes in BNP with future clinical events, and whether serial BNP measurements add prognostic information in pts treated for decompensated HF Study type: Retrospective registry analysis	Inclusion criteria: Pts hospitalized for acute decompesated HF by Framingham criteria Exclusion criteria: Renal failure, severe lung disease, acute coronary syndrome	 <u>1° endpoint:</u> For the combined end point of total mortality or readmission for HF <u>Results:</u> Increasing tertiles of BNP levels after treatment had a hazard ratio of 1.4 (1.1–1.7, p<0.01) and increasing tertiles of percent reduction in BNP, had a HR:0.7 (0.6–0.9; p=0.005), respectively, for the combined end point of total mortality or readmission for HF Follow-up BNP performed better than did baseline BNP or percent reduction in BNP. More BNP measurements other than the follow-up BNP did not improve the fit of the model further. 	 Both lower absolute BNP levels and greater percentage reduction in BNP with treatment of decompensated HF are associated with better event-free survival. Advocating a threshold BNP to which pts should be treated may not be possible given that high BNP levels tend not to decrease to levels associated with better outcomes during the short period of treatment. More BNP measurements do not add prognostic information beyond that provided by a single BNP level after treatment
Alonso-Martinez et al. 2002 (54) <u>12034159</u>	Aim: To determine usefulness of CRP in predicting need for readmission in HF	Inclusion criteria: Intervention group: admission with HF; control group: admission with syncope	 <u>1° endpoint:</u> 18-mo HF readmission CRP levels were higher in pts with HF compared to syncope (3.94 vs. 0.84, p<0.0007) 	 Multivariate predictors of readmission were CRP levels, NYHA class and plasma K on discharge Limitation: small, single-center

	<u>Study type</u> : Observational <u>Size:</u> 76	Exclusion criteria: Clear cause for elevated CRP (e.g., inflammation, infection)	 Higher CRP levels were associated with higher NYHA class, increased risk of HF readmission, shorter time to readmission, and increased mortality <u>Safety endpoint</u>: NYHA class on discharge and death 	observational study
Dieplinger et al. 2010 (55) <u>20153308</u>	Aim: To evaluate the prognostic value of established and novel biomarkers in pts with acute dyspnea Study type: Observational Size: 251	Inclusion criteria: Pts presenting to ED with acute dyspnea Exclusion criteria: STEMI, NSTEMI or ACS troponin pos. Biomarkers: BNP, MR-proANP, MR- proADM, copeptin, C- terminal pro-ET-1, soluble ST2, chromogranin A (CgA), adiponectin, proguanylin, prouroguanylin	 <u>1° endpoint</u>: All-cause mortality at 1 y 25% died within 1 y At baseline, decedents (n=62) had higher median plasma concentrations of all 10 biomarkers than survivors (n=189) In multivariate model, only MR-proANP (RR: 1.6), ST2 (RR: 1.7) and CgA (RR: 1.5) were independent predictors of death 	 Low systolic BP and advanced age were also independent predictors of 1-y mortality Limitations: post-hoc analysis; sub- group (87 of 251) had dyspnea due to acute HF alone; single-center, majority men (94%)
Ilva et al. 2008 (56) <u>18599345</u>	Aim: To evaluate prevalence and prognostic significance of elevated cTnl and cTnT in acute HF <u>Study type:</u> Observational substudy <u>Size</u> : 364	Inclusion criteria: Hospitalized with acute HF Exclusion criteria: ACS pts; missing sample for cardiac TnI/TnT Biomarkers on admission and 48 hours: cTnT, cTnI, cystatin C, NT- proBNP	<u>1° endpoint</u> : 6 -mo mortality • 51% of pts had +cTnI and 30% had +cTnT • 6-mo all-cause mortality was 18.7% • Both cTnI (OR: 2.0; 95% CI: 1.2–3.5) and cTnT (OR: 2.6; 95% CI: 1.5–4.4) were associated with adverse outcome in pts with previous, but no de novo HF	 On multivariable analysis, cystatin C (OR: 6.3; 95% CI: 3.2–13), logNT-proBNP (OR: 1.4; 95% CI: 1.0–1.8) and SBP on admission (/10 mm Hg increase; OR: 0.9; 95% CI: 0.8–0.9) were independent risk predictors, whereas troponins were not Mortality was proportional to troponin release Limitations: exclusion of pts with ACS was based on clinician judgment; cut-off values for troponins was based on 2000 ESC/ACC guidelines
Januzzi et al. 2007 (57) <u>17692745</u>	Aim: To examine the value of measuring ST2 in pts	Inclusion criteria: Pts presenting to ED with acute dyspnea	1° endpoint: •death at 1 y • ST2 levels were significantly higher in pts	• ST2 levels were higher in pts with HF/EF (0.67 ng/ml; IQR 0.31–1.50) vs. HF/EF (0.42 ng/ml; IQR 0.22–

Manzano-Fernandez et al. 2011 (58) <u>21211603</u>	with acute dyspnea <u>Study type:</u> Observational <u>Size:</u> 593 (pts with acute HF 209, other causes of acute dyspnea 384) <u>Aim:</u> To determine whether risk of mortality associated with ST2 differs in pts with acute HF,pEF vs. HF,rEF	Exclusion criteria: Not reported Inclusion criteria: Acute HF Exclusion criteria: N/A	 with acute HF (0.50 ng/ml; IQR 0.27–1.22) vs. those without (0.15 ng/ml; IQR 0.06– 0.42) 1-y mortality was 15.7% ST2 levels were significantly higher in decedents than survivors (1.03 vs. 0.18 ng/ml; p<0.001) In multivariable analysis, ST2 ≥0.20 ng/ml strongly predicted death at 1 y <u>1° endpoint:</u> 1 y vital status During 1-y follow-up, 117 pts (26%) died ST2 levels were higher among deceased than survivors (median 0.80 ng/ml vs.0.38 	 0.90) A multi-marker approach with both ST2 and NT-proBNP levels identified subjects with the highest risk for death Limitations: single-center study; biologic role of ST2 in acute HF poorly understood Pts with HF/EF had higher ST2 levels than HFpEF (median 0.55 ng/ml vs. 0.38 ng/ml; p<0.001) Addition of ST2 to NT-proBNP improved C statistic and both net 	
	Study type: Observational study combining 3 databases (Boston, MA; Linz, Austria; Murcia, Spain) Size: 447	Biomarkers: ST2, troponin T, NT-proBNP, CRP	ng/ml; p<0.001); and this pattern was true for HF/EF and HF <i>p</i> EF • On multivariate analysis, elevated ST2 levels were associated with greater risk of 1-y mortality for HF <i>p</i> EF (HR: 1.41; 95% CI: 1.14–1.76) than HF <i>r</i> EF (HR: 1.20; 95% CI: 1.10–1.32)	reclassification improvement and integrated discrimination improvement, regardless of LVEF • Limitations: pooled multinational analysis that lacked predefined endpoints and complete echocardiographic measures; no pre-discharge ST2 levels	
Rehman et al. 2008 (59) <u>19017513</u>	Aim: To examine patient- specific characteristic of ST2 in pts with acute HF Study type: Observational study combining 2 databases (Boston, MA; Linz, Austria) Size: 346	Inclusion criteria: Acute HF Exclusion criteria: N/A Biomarkers: ST2, BNP, NT-proBNP, CRP	 <u>1° endpoint</u>: ROC curves and multivariable Cox proportional hazards analyses ST2 levels correlated with severity of HF (p<0.001), LVEF and creatinine clearance ST2 levels correlated with BNP, NT-proBNP and CRP In a multivariable model, ST2 remained a predictor of mortality (HR: 2.04; 95% CI: 1.30–3.24) 	 Pts with HFpEF had lower ST2 levels compared to HF/EF 1-y mortality was 42% among 116 pts with elevation in both ST2 and BNP/NT-proBNP In the presence of a low ST2 level, BNP/NT-proBNP did not predict mortality Limitations: lack of serial measures of ST2; biologic role of ST2 in acute HF poorly understood 	

Shah et al. 2010 (60) <u>20525986</u>	Aim: To determine the relationship between galectin-3 and cardiac structure and function in pts with acute dyspnea <u>Study type:</u> Observational <u>Size:</u> 115	Inclusion criteria: PT presenting to ED with acute dyspnea, detailed echo exams during admission Exclusion criteria: N/A Biomarkers: galectin-3, NT-proBNP	 <u>1° endpoint</u>: Association between galectin-3 and echo and clinical indices Higher levels of galectin-3 associated with older age, poorer renal function, and higher NT-proBNP Significant relationship between galectin-3 and poorer RV function, higher RV systolic pressure and more severe MR and TR 	 Galectin-3 levels higher in pts who died at 1 and 4 y In multivariate analysis, galectin-3 remained a significant predictor of 4-y mortality independent to echocardiographic markers of risk Limitations: delay between collection of biomarkers and echocardiograms; small, single- center cohort
---	--	--	--	---

Search Terms and Date: natriuretic peptides, heart failure, human, last 5 years. Last search done on April 18, 2016.

Data Supplement 1. RCTs Comparing ARNI (Section 7.3.2.10)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% Cl)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
PARAMOUNT Solomon et al. 2012 (61) 22932717	Aim: To address safety and efficacy of LCZ696 (ARNI) in pts with HF <i>p</i> EF Study type: RCT Size: 308	Inclusion criteria: Pts ≥40 y of age, LVEF ≥45%, NYHA class II-III HF, NT-pro BNP >400 pg/mL. Exclusion criteria: Right HF due to pulmonary disease, dyspnea due to noncardiac causes, valvular/myocardial disease, CAD or CVD needing revascularization within 3 mo of screening.	Intervention: LCZ696 (149) target dose 200 mg BID achieved in 81% Comparator: Valsartan (152) target dose 160 mg BID achieved in 78%	 <u>1° endpoint</u>: Change from BL at 12 wk for NT-proBNP Results: Reduction in LCZ696 group vs. valsartan (ratio of change from BL: 0.77, 95% CI: 0.64–0.92; p=0.005) <u>1° Safety endpoint</u>: LCZ-696 well tolerated. Serious adverse events: 15% in LCZ696 vs. 20% in valsartan group 	 No difference in change in NT-proBNP from BL at 36 wk BP reduced in the LCZ696 group vs. valsartan at 12 wk (p=0.001 for SBP and p=0.09 for DBP) Change in BP correlated poorly with the change in pro-BNP No difference in improvement in NYHA class at 12 wk (p=0.11) and 36 wk (p=0.05). No difference in KCCQ scores Trial not powered to ascertain clinical outcomes. Further studies needed to assess safety and efficacy in HF<i>p</i>EF pts.
PARADIGM-HF McMurray et al. 2014	Aim: To compare survival rates with the use of	Inclusion criteria: ≥18 y of age, NYHA class II, III, IV; EF ≤35%, BNP of at least 150	Intervention: LCZ696 (4,187) target dose 200 mg BID (mean	 <u>1° endpoint</u>: Composite of death (CV causes) or a first 	• Less CV death in LCZ696 arm (558 vs. 693) HR: 0.8 (95% CI: 0.71–0.89; p<0.001)

(62)	LCZ696 with	pg/mL, hospitalized for HF <12 mo	375 <u>+</u> 71 mg daily)	hospitalization for HF	Less HF hospitalizations in LCZ696 arm
<u>25176015</u>	enalapril in HF	(≥BNP100 pg/mL), on ACE			(537 vs. 658) HR: 0.79 (95% CI: 0.71–
		inhibitors or ARBs ≥4 wk before	Comparator:	Results: Composite less in	0.89; p<0.001)
	Study type:	screening, required to take stable	Enalapril (4,212) target 10	LCZ696 group vs.	 Less death from any cause in LCZ696
	RCT	dose of beta blockers and an ACE inhibitor (or ARB) equal to 10mg of	mg BID (mean 18.9 <u>+</u> 3.4	enalapril, 914 (21.8%) vs.	arm (711 vs. 835), HR: 0.84 (95% CI:
	Sizo	enalapril. Prior to randomization pts	mg daily)	1,117, (26.5%) HR: 0.80	0.76–0.93; p<0.001)
	<u>Size</u> : 8.442	were required to complete 2 wk		(95% CI: 0.73–0.87; p<0.001)	 The change from baseline to 8 mo in the score on the KCCQ in LCZ696 arm (2.99
	0,112	each of enalapril 10 mg BID and		p (0.001)	points reduction vs. 4.63 points), HR:
		LCZ 100 BID.			1.64 (95% CI: 0.63–2.65; p=0.001)
					• No difference in new onset of AF (84 vs.
		Exclusion criteria:			83; p=0.84)
		Symptomatic hypotension, SBP <95			No difference in protocol defined decline
		mm Hg, eGFR <30 mL/min/min/1.73m ² of body surface			in renal function, HR: 0.86 (95% CI:
		area, serum K level >5.2 mmol/L,			0.65–1.13; p=0.28).
		angioedema history, unacceptable			• More symptomatic hypotension (14% vs.
		side effects of ACE inhibitors or			9.2%; p<0.001)
		ARBs			 No difference in angioedema, 19 vs.10 (p=0.13)
					(p=0.13)

Search Terms and Date: 3 trials identified by chairs in December 2015.

		RAAS IIIIIDILIOII (Section	,	Endneint Beeulte	Delevent 00 Frida sint (if
Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% Cl)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
ONTARGET ONTARGET Investigators et al. 2008 (63) <u>18378520</u>	Aim: Compare ACE (ramipril), ARB (telmisartan), and combination ACE/ARB in pts with CVD or high- risk DM Study Type: RCT Size: 25,620	Inclusion Criteria: Pts >55 y of age, CAD, PVD, previous stroke, or high-risk DM with end-organ damage Exclusion Criteria: HF at trial entry, ACE or ARB intolerance, revascularization planned or <3 mo	Intervention: Run in, then randomization to ramipril (8,576) target dose 10 mg daily, telmisartan (8,542) target dose 80 mg daily or combination (8,502), titrated to BP	 <u>1° endpoint</u>: Composite of CV death, MI, stroke, or HF hospitalization at 5 y Results: No difference in outcome (16.5% ACE, 16.7% ARB, 16.3% combination; CI: ARB RR: 1.01 (95% CI: 0.94–1.09) 	 Compared to the ramipril arm: Telmisartan had more hypotensive symptoms (p<0.001); less cough (p<0.001) and angioedema (p=0.01); same syncope. Combination arm had more hypotensive symptoms (p<0.001); syncope (p=0.03); and renal dysfunction (p<0.001) BP fell by 6.4/7.4/9.8 mm Hg Less angioedema with telmisartan
TRANSCEND Yusuf et al. 2008 (64) <u>18757085</u>	Aim: To assess the effectiveness of ARB in ACE- intolerant pts with CVD or high-risk DM Study Type: RCT Size: 5,926	Inclusion Criteria: ACE-intolerant pts with CAD, PVD, previous stroke, or high-risk DM with end-organ damage Exclusion Criteria: HF at trial entry, revascularization planned or <3 mo	Intervention: Run in, then randomization to telmisartan titrated to 80 mg as tolerated (2,954) Comparator: Titration of other mediations as needed to control BP (2,944)	 <u>1° endpoint:</u> Composite of CV death, MI, stroke, or HF hospitalization at 5 y <u>Results</u>: No significant difference RR: 0.92 (95% CI: 0.81–1.05); p=0.216 	 No difference in 2° outcomes; ARB was safe in this pt population - no angioedema
SUPPORT Sakata et al. 2015 (65) <u>25637937</u>	Aim: Discover whether addition of ARB to ACE and beta blockers in pts with chronic HF will	Inclusion Criteria: Pts 20–79 y of age with hypertension, NYHA class II-IV, stable on ACE ± beta blockers	Intervention: Randomization to olmesartan (578) titrated up to 40 mg as tolerated (578) (mean dose achieved at 5 y, 17.9	 <u>1° endpoint:</u> Composite of all-cause death, MI, stroke, or HF hospitalization at 4.4 y <u>Results:</u> No significant difference RR: 1.18 (95% CI: 0.96–1.46); p=0.11 	 Pts on triple therapy with ACE/ARB/Beta blocker had more of 1° composite outcome, 38.1 vs. 28.2%, HR: 1.47 (95% CI: 1.11– 1.95; p=0.006); all-cause death, 19.4 vs. 13.5%, HR: 1.50 (95% CI:

Data Supplement 2. RCTs Comparing RAAS Inhibition (Section 7.3.2.3)

	improve clinical outcomes <u>Study Type:</u> Open label blinded endpoint <u>Size:</u>	Exclusion Criteria: Creatinine >3.0, MI or, revascularization within 6 mo	mg/d) <u>Comparator:</u> Titration to control BP without use of an ARB (568)		1.01–2.23; p=0.046); and renal dysfunction (21.1 vs. 12.5%, HR: 1.85 (95% CI: 1.24–2.76; p=0.003).
Mineralocorticoids An	1,147				
EMPHASIS subgroup analysis Eschalier et al. 2013 (66) 23810881	Aim: Investigate the safety and efficacy of eplerenone in pts at high risk for hyperkalemia Study Type: Prespecified subgroup analysis of RCT Size: 2,737	Inclusion Criteria: Pts enrolled in EMPHASIS at high risk for hyperkalemia of worsening renal function (>75 y, DM, eGFR <60, or SBP <123) Exclusion Criteria: eGFR<30	Intervention: Randomization to eplerenone Comparator: Placebo	 <u>1° endpoint</u>: Efficacy: Hospitalization for HF or worsening renal failure. Safety: K >5.5, >6.0, <3.5, hospitalization for significant hyperkalemia, hospitalization for worsening renal function <u>Results:</u> Efficacy: reduced composite endpoint. Safety: increased risk of K+ >5.5 mmol/L, hospitalization for hyperkalemia or discontinuation of study medication due to adverse events. No differences from the main trial results in the high-risk subgroups. K >5.5 was increased in the whole cohort and the subgroups, but K >6.0, clinically significant hyperkalemia, and change in eGFR were not substantially higher. 	The beneficial effects of eplerenone were maintained in the high-risk subgroups.
RALES Pitt et al. 1999 (67) <u>10471456</u>	Aim: To investigate the effect of spironolactone on mortality and morbidity in pts with severe HF. Study Type:	Inclusion Criteria: NYHA class III, IV; HF≤6 mo, Left EF≤35%, On ACE inhibitors, loop diuretic. Digitalis and vasodilators allowed. Exclusion Criteria: 1° operable VHD (other than	Intervention: Spironolactone 25 mg daily (822) Comparator: Placebo (841)	 <u>1° endpoint:</u> Death from all causes <u>Results:</u> Placebo vs. Spironolactone group (46% vs. 35%; RR: 0.70; 95% CI: 0.60–0.82; p<0.001) Trial stopped early due to favorable results at 24 mo. 	 Reduction in death from cardiac causes and Hospitalization for cardiac causes (p<0.001) Improvement in NYHA class (p<0.001) No clinically important safety concerns for electrolytes. Gynecomastia/breast pain more frequent in the spironolactone

RCT	mitral or tricuspid), ACHD,		group (p<0.001)
	unstable angina, 1° heaptic		
<u>Size:</u>	failure, active cancer, life		
1,663	threatening disease, heart		
	transplant, serum Cr ≥2.5		
	mg/dĹ, serum K ≥5.0 mmoL/L		

The ARB evidence table from the 2013 Heart Failure Guideline is included at the end of this document.

The ACE inhibitor evidence table from the 2013 Heart Failure Guideline is also included at the end of this document.

The Beta Blocker evidence table from the 2013 Heart Failure Guideline is included at the end of this document.

Study Acronym; Author;Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% CI)	Relevant 2° Endpoint; Study Limitations; Adverse Events
IMPRESS Rouleau et al. 2000 (68) 10968433Aim: Determine if inhibit of neutral endopeptidase and ACE with the vasopeptidase inhibitor omapatrila is better than ACE inhibition alone wit lisinoprilStudy type: Double blind RCTSize: 573 pts	 Age ≥18 Stable (>3 mo) symptomatic HF (NYHA class II–IV HF) Decreased LVEF ≤40 ≥4 wk dose of ACE inhibitors Seated SBP ≥90 mm Hq 	Intervention: Omapatrilat (289) target dose 40 mg daily Comparator: Lisinopril (284) target dose 20 mg daily	<u>1° endpoint</u> : Change in exercise duration from baseline to wk 12 Results : Similar exercise duration at 12 wk (p=0.45)	 <u>2° endpoint</u>: No difference in combined endpoint of death and admission for worsening HF (p=0.52) Combined endpoint of death and comorbidity for worsening HF was better for omapatrilat HR: 0.52 (95% CI: 0.28–0.96; p=0.035) Angioedema occurred in no pts taking omapatrilat vs. 1 taking enalapril <u>Comments</u>: Vasopeptidase inhibitor omapatrilat did not improve exercise tolerance compared with ACE inhibitor lisinopril

Data Supplement 3. RCTs Comparing Pharmacological Treatment for of ARNI With ACE (Section 7.3.2.10)

OVERTURE Packer et al. 2002 (69) <u>12186794</u>	Aim: Determine dual ACE and NEP inhibitors provides greater benefit in pts with HF than ACE inhibitors alone Study type: Double blind RCT Size: 5,770 pts	 Use of beta blockers <6 mo Calcium channel blockers for use other than AF Pts included in previous RCTs of omapatrilat Inclusion criteria: NYHA class II–IV HF due to non/ischemic cardiomyopathy for ≥2 mo, or LVEF ≤30% and hospitalized for HF within 12 mo Exclusion criteria: Surgically correctable or reversible cause of HF Likely to receive cardiac transplant or left ventricular assist device Severe 1° pulmonary, renal, or hepatic disease Hx of intolerance to ACE inhibitors ACS within 1 mo Coronary revascularization or an acute cerebral ischemic event within 3 mo Hx of ventricular tachycardia, ventricular fibrillation, or sudden death who did not have an ICD placed and had not fired within 2 mo Hx or hospitalization or intravenous therapy for HF within 48 h IV positive inotropic agent within 2 wk SBP >180 or <90 mm Hg Heart rate >130 bpm Serum creatinine >2.5 mg/dL Serum potassium <3.5 or >5.2 mmol/L 	Intervention: Omapatrilat (2,886), target dose 40 mg daily achieved 82.5% Comparator: Enalapril (2,884) target dose 10 mg BID achieved 86.4%	1° endpoint: Combined risk of death or hospitalization for HF requiring IV treatment Results: No significant difference HR: 0.94 (95% CI: 0.86–1.03; p=0.187)	 Omapatrilat reduced risk of death and hospitalization for chronic HF HR: 0.89 (95% CI: 0.82–0.98; p=0.012). For this analysis, pts were treated with intensification of oral medications. More frequent angioedema with omapatrilat (0.8% vs. 0.5%)
OCTAVE Kostis et al. 2004 (70) <u>14751650</u>	Aim: Compare safety and efficacy of dual ACE and NEP inhibitors to ACE inhibitors alone Study type: Double blind RCT	Inclusion criteria: • Age ≥18 • 3 separate BP criteria for 3 groups: Group 1 untreated hypertension (SBP ≥140 mm Hg or DBP ≥90 mm Hg); Group 2 hypertension and persistent mild hypertension (trough SBP 140– 159 mm Hg and DBP <100 mm Hg, or trough DBP 90–99 mm Hg and SBP <160 mm Hg);	Intervention: Omapatrilat target dose 80 mg daily Comparator: Enalapril target dose 40 mg daily	 <u>1° endpoints</u>: Reduction in SBP at wk Need for new adjunctive antihypertensive therapy by wk 24 	2° endpoints: • Reduction in DBP at wk 8 • Reduction in SBP and DBP at wk 24 • BP control (SBP <140 mm Hg and DBP <90 mm Hg) at wk 8 and 24 <u>Comments</u> :

	Group 3 hypertension with persistent moderate	Greater reductions in BP in
Size:	to severe hypertension (trough SBP 160–179	omapatrilat within each study
25,302 pts	mm Hg and DBP <110 mm Hg, or trough DBP	(p<0.001)
	100–109 mm Hg and SBP <180 mm Hg)	• Overall mean reduction in SBP
		≥3.6 mm Hg
	Exclusion criteria:	Larger reductions in BP in black
	 Contraindication to therapy with ACE inhibitors 	pts with omapatrilat than with
	or angiotensin II receptor antagonists	enalapril. But overall reduction
	 Hx of angioedema, anaphylaxis, drug-induced 	smaller with both drugs than in other
	or chronic urticarial, or multiple drug sensitivities	subgroups.
	 Recent hospitalization for MI, unstable angina, 	 Adverse events, serious adverse
	stroke, TIA or COPD	events, and deaths were the same
	 Recent treatment for malignancy, chronic renal 	for omapatrilat and enalapril
	disease 2° to autoimmune disease, or end-stage	 More angioedema with omapatrilat
	renal disease of any etiology	(2.17% vs. 0.68%)
	 Hypertensive pts treated with ACE inhibitors 	 More angioedema in blacks with
	whose BP placed them in study group 3	omapatrilat (5.54% vs. 1.62%) and
		current smokers (3.93% vs. 0.81%)

Search Terms and Date: March 2016, angioedema, neprilysin inhibitors, omapatrilat.

Data Supplement 4. RCTs Comparing Pharmacological Treatment for Stage C HF/EF (Section 7.3.2.11)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% Cl)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
SHIFT HF Böhm et al. 2015 (71) <u>26508709</u>	Aim: To assess influence of comorbidities on outcomes and ivabradine treatment effect of heart rate reduction in stable HF. Study type: Post hoc analysis of RCT	Inclusion criteria: Pts ≥18 y of age in sinus rhythm, heart rate at rest ≥70 bpm, MTD for HF meds Exclusion criteria: N/A	Intervention: Ivabradine <u>Comparator</u> : Placebo	 <u>1° endpoint</u>: CV death or HF hospitalization rate increased with the comorbidity load (p<0.0001) with most events in pts with >3 comorbidities for both drug and placebo. Hospitalization rate lower for comorbidity loads of ivabradine 	 Number of comorbidities was related to outcomes Heart rate reduction with Ivabradine is conserved at all comorbidity loads

	<u>Size</u> : 6,505				
SHIFT Swedberg K et al. 2010 (72) 20801500 Ivabradine and outcomes in chronic HF (SHIFT)	Aim: To assess the effect of heart rate reduction by the selective sinus- node inhibitor ivabradine on outcomes in HF Study type: randomized, double-blind placebo-controlled trial. 677 centers 37 countries Size: 6,558 6,505 analyzed 3,241 ivabradine 3,264 placebo	Inclusion criteria: O ver 18 y of age, in sinus rhythm, resting heart rate of ≥70 bpm, stable symptomatic chronic HF (NYHA class II-IV) for ≥4 wk, previous admission to the hospital for HF within 12 mo, LVEF ≤35% Exclusion criteria: HF due to congenital heart disease or 1° severe valvular disease. MI within 2 mo, ventricular or AV pacing for ≥40% of the d, AF or flutter, symptomatic hypotension The following treatments not allowed during study: • diltiazem and verapamil (nondihydropyridine CCB) • class I antiarrhythmics • strong inhibitors of CYP450 3A4	Intervention: Ivabradine <u>Comparator</u> : Placebo	 <u>1° endpoint</u>: Composite of CV death or hospital admission for worsening HF Primary endpoint: ivabradine better. Event rate 24% vs. 29%. HR 0.82 (0.75–0.90); p<0.0001 Hospitalization for worsening HF: ivabradine better. 16% vs 21%, HR: 0.74 (95% CI: 0.66–0.83; p<0.001) Death from HF: ivabradine better. 3% vs. 5%; HF: 0.74 (0.58–0.94); p=0.014 	 Composite of CV death or hospital admission for worsening HF among those receiving at least 50% of target beta blocker dose at time of randomization. All cause death; any CV death; HF hospitalization; all-cause hospitalization; any CV hospitalization; death from HF; composite of CV death HF hospitalization, nonfatal MI. No difference in all-cause mortality or CV mortality Ivabradine better for all-cause hospitalization, HF hospitalization, CV hospitalization, and composite 2° endpoint Analyzed as time to first event. Median follow-up of 22.9 mo In subgroup analysis, effect limited to those with higher baseline heart rate (≥77 bpm) Use of devices was low (CRT in 1% and ICD in 4%) Mean age 61 y When added to GDEM, including beta blocker at optimal dose, ivabradine reduced adverse events, driven largely by HF mortality or HF hospitalization Adverse Effects: 1% withdrew due to bradycardia (p<0.001) Phosphenes 3% (p<0.001)
SIGNIFY Fox et al. 2014 (73)	<u>Aim</u> : Assess the mortality-morbidity	Inclusion criteria: Stable CAD without clinical HF and heart rate of ≥70	Intervention: Ivabradine (n=9,550)	 <u>1° endpoint</u>: Composite of CV death and nonfatal MI 	 Adverse Events: Increased bradycardia, AF, phosphenes and cardiac disorders.

<u>25176136</u>	benefits of Ivabradine in pts with stable CAD without clinical HF <u>Study type</u> : RCT <u>Size</u> : 19,102	bpm and in sinus rhythm, persistence and confirmation of ≥1 CV risk factors <u>Exclusion criteria</u> : Serum creatinine >200 mcmol /L, significant anemia, ALT or AST >3 times upper normal value, unstable CV condition, LVEF ≤40%; MI, coronary revascularization, stroke ≤3 mo.	Comparator: Placebo (n=9,552)	 Results: No significant difference in incidence of 1° endpoint (HR: 1.08; 95% Cl: 0.96–1.20; p=0.20), death from CV causes (HR: 1.10; 95% Cl: 0.94–1.28; p=0.25), nonfatal MI (HR: 1.04; 95% Cl: 0.90–1.21; p=0.60) and rate of death (HR: 1.06; 95% Cl: 0.94–1.21; p=0.35) <u>1° Safety endpoint:</u> Incidence of bradycardia higher in Ivabradine group (p=0.001) 	• Significant interaction between ivabradine and presence of angina in a subgroup analysis (p=0.02).
BEAUTIFUL Fox et al. 2008 (74) <u>18757088</u>	Aim: Assess the mortality-morbidity benefits of Ivabradine in pts with CAD and LV systolic dysfunction Study type: Randomized, double-blind, placebo-controlled Size: 10,917 5,479 ivabradine 5438 placebo	Inclusion criteria: Pts ≥55 y of age with stable CAD defined as: previous MI, previous revascularization (PCI or surgery), or angiographic evidence of ≥1 stenosis of ≤50%) AND LVEF <40% and end diastolic internal dimension of >56 mm. Sinus rhythm with resting heart rate of ≥60 bpm. Angina and HF symptoms stable for 3 mo Appropriate conventional CV medication for 1 mo. Exclusion criteria: MI or coronary revascularization within the previous 6 mo; stroke or TIA within 3 mo, PPM or ICD, valvular disease likely to	Intervention: Ivabradine n=5,479 Comparator: • Placebo in addition to appropriate CV medication n=5,438	 (p=0.001) <u>1° endpoint</u>: Composite of CV death, admission for MI and admission for HF No difference in composite 1° endpoint (22.5% vs. 22.8%; HR: 1.00; 0.91–1.1; p=0.94) No differences in any prespecified subgroup. 	2° endpoints: 1) All-cause mortality 2) Cardiac death (death from MI or HF or related to a cardiac procedure) 3) CV death (death from a vascular procedure, presumed arrhythmic death, stroke death, other vascular death or sudden death of unknown cause) or admission for HF, 4) Composite of admission for fatal and nonfatal MI or UA 5) Coronary revascularization 6) CV death 7) Admission for HF 8) Admission for HF 8) Admission for MI • No differences in 2° endpoints in overall population. • In subgroup with heart rate of ≥70, ivabradine reduced 1) admission for AMI (fatal and nonfatal) (HR 0.64; 0.49–0.84; p=0.001) 2) composite of admission for AMI or UA (HR 0.78; 0.62–0.97; p=0.023)

need surge	ry within 3 y,	3) coronary revascularization (HR 0.7; 0.52–0.93;
SSS, sinoa	trial block,	p=0.16)
congenital	ong QT,	
complete A	V block, severe	 28% in Ivabradine group discontinued medication
or uncontro	lled	(vs. 16%), largely due to bradycardia (13% vs. 2%)
hypertensi	on, NYHA class	
IV HF		 No significant difference in adverse effects (23% vs.
		23%; p=0.70)

Search Terms and Date: studies identified by chairs in December 2015, one study added by Jan 2016.

Data Supplement C. RCTs Comparing Pharmacologic Treatment for HF*p*EF: Recommendations (Section 7.3.3)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% Cl)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
HYVET Beckett et al. 2008 (75) <u>18378519</u>	Aim: To determine whether treatment of HTN is beneficial in the elderly. Study type: RCT Size: 3,845	Inclusion criteria: Age >80, persistent HTN (SBP >160) Exclusion criteria: Known HF, creatinine >150 μmol/L (1.7 mg/dL), CVA <6 mo	Intervention: Indapamide + perindopril if needed for BP control. Target 150/80 mm Hg (1,933) Comparator: Placebo (1,912)	 <u>1° endpoint</u>: Fatal or nonfatal stroke. Trend for improved outcome with active treatment 51 strokes (12.4/1,000 pt-y) vs. placebo 69 (17.7/1,000 pt-y), HR: 0.70; 95% Cl: 0.49–1.01; p=0.06) and significantly reduced fatal stroke 27 (6.5/1000 pt-y) vs. placebo 42 (10.7/1000 pt-y), HR: 0.61; 95% Cl: 0.38–0.99; p=0.046) 	 Significantly reduced all-cause death HR: 0.79 (95% CI: 0.65–0.95; p=0.02) and HF incidence HR: 0.36 (95% CI: 0.22–0.58, p<0.001) with active treatment Trend for decreased CV and HF death (p=0.06 for both)
ALLHAT Long-term Follow-up Piller et al. 2011 (76) 21969009	Aim: To compare diuretic- based to ACE- inhibitor or CCB- based treatment of HTN Study type: RCT	Inclusion criteria: Age >55, HTN (SBP ≥140, DBP≥90), at least 1 CV risk factor (MI, stroke, LVH, diabetes, low HDL, PVD) Exclusion criteria:	Intervention: Amlodipine (8,898) 572 with in-trial HF, Lisinopril (8,904); 469 with in-trial HF Comparator: Chlorthalidone (15,002); 720 with in-trial HF	 <u>1° endpoint</u>: Adjusted mortality risk Increased mortality with intrial incident HF, both HF<i>p</i>EF: HR: 2.42 (95% CI: 2.08–2.81, p<0.001) and HFrEF: HR: 3.06; 95% CI: 2.67–3.51; p<0.001) 	 Increased HF mortality with incident HF, both HF<i>p</i>EF: HR: 3.81 (95% CI: 2.18–6.67, p<0.001) and HF<i>r</i>EF: HR: 6.80; 95% CI: 4.36–10.62; p<0.001) No difference in mortality in pts with incident HF by drug treatment

SHEP HF Results Kostis et al. 1997 (77) 9218667	Size: 32,804 Aim: To assess the effect of antihypertensive treatment in isolated systolic HTN Study type: RCT	Symptomatic HF, EF <35% at trial entry Inclusion criteria: Age > 60, SBP 160– 219, DBP<90 Exclusion criteria: Recent MI or CABG, pts with DM, stroke, AF	Intervention: Antihypertensive therapy: step 1, chlorthalidone, step 2, atenolol (2,365) Comparator: Placebo (2,371)	 <u>1° endpoint</u>: Incident HF Active treatment decreased BP from mean of 170/77 to mean of and decreased HF events from 105 (4.4%) with placebo to 55 (2.3%) RR: 0.51 (95% Cl: 0.37–0.71, p<0.001) at 	 1° results of SHEP showed decreased stroke risk with active treatment 149 (8.2%) with placebo to 96 (5.4%) RR: 0.64 (95% CI: 0.49–0.82, p=0.003) at 4.5 y LV function was not measured
CHARM-Preserved Yusuf et al. 2003 (78) <u>13678871</u>	Size: 4,736 Aim: To ascertain efficacy of candesartan in pts with HF <i>p</i> EF. Study type: RCT Size: 3,023	Inclusion criteria: HF pts in NYHA class II-IV with EF >40% Exclusion criteria: Creatinine >265 μmol/L (3.0 mg/dL), potassium >5.5 mmol/L, MI, stroke, or open-heart surgery in the previous 4 wk	Intervention: Candesartan (1,514) Comparator: Placebo (1,509)	 4.5 y CV death or admission for HF. No difference for candesartan 333 (22%) vs. placebo 366 (24%) at 3.5 y, HR: 0.89; 95% CI: 0.77–1.03; p=0.12) covariate adjusted HR: 0.86 (95% CI: 0.74–1.00); p=0.051) 	 No differences for 2° endpoints except for covariate adjusted risk of HF admission HR: 0.84 (95% Cl: 0.70–1.00; p=0.047). CV death 11.2 vs. 11.3% HR: 0.99 (95% Cl: 0.80–1.22; p=0.918). Adverse effects requiring discontinuation: hypotension (2.4 vs. 1.1%; p=0.009; increased creatinine, 4.8 vs. 2.4%; p=0.005; hyperkalemia 1.5 vs. 0.6%; p=0.029) Limitations: Some pts may have
PEP-CHF Cleland et al. 2003 (79) <u>16963472</u>	Aim: To ascertain efficacy of perindopril in pts with HF <i>p</i> EF. Study type: RCT Size:	Inclusion criteria: Age ≥70, Rx with diuretics for clinical diagnosis of HF, echo criteria for diastolic dysfunction Exclusion criteria:	Intervention: Perindopril (424) Comparator: Placebo (426)	 <u>1° endpoint</u>: All-cause mortality or admission for HF. No difference for perinopril 107 (25.1%) vs. placebo 131 (23.6%) at 3 y, HR: 0.92; 95% CI: 0.70– 1.21; p=0.5. 	 had previous EF <40%. HF hospitalization lower at 1 y with perindopril: 34 events (8.0%) vs. placebo 53 (12.4%), HR: 0.63; 95% CI: 0.41–0.97; p=0.033). Limitations: Many pts withdrew (40% by 18 mo), often to take open-label ACE inhibitors (36% by study end).

	850	Creatinine >200 µmol/L (2.3 mg/dL), potassium > 5.4 mmol/L			
I-PRESERVE Massie et al. 2008 (80) <u>19001508</u>	Aim: To ascertain efficacy of irbesartan on in pts with HF <i>p</i> EF. Study type: RCT <u>Size:</u> 4,128	Inclusion criteria: Age > 60, HF pts in NYHA class II-IV with EF >45% Exclusion criteria: Previous EF <40%, creatinine >222 µmol/L (2.5 mg/dL) ACS, stroke, or revascularization in the previous 3 mo	Intervention: Irbesartan (2,067) <u>Comparator</u> : Placebo (2,061)	 <u>1° endpoint</u>: CV death or hospitalization for CV cause. No difference for irbesartan vs. placebo (742 (36%) vs. 763 (37%), HR: 0.95; 95% CI: 0.86 – 1.05; p=0.35) 	 No differences for mortality or any other 2° endpoints Minnesota living with HF scale improved in both, groups to the same No difference in BNP levels No difference in adverse effects requiring discontinuation: doubling of creatinine, 6% vs. 4%; p<0.001; K >6.0 3% vs. 2%; p=0.01) Limitations: Study drug discontinuation in 34% of pts by end of study. High rate of concomitant ACE-I (40%)
NEAT-HF <i>p</i> EF Redfield et al. 2015 (81) <u>26549714</u>	Aim: To ascertain efficacy of isosorbide mononitrate on daily activity in pts with HF <i>p</i> EF. Study type: Double-blind crossover Size: 110	Inclusion criteria: Age ≥50 y on stable HF therapy, EF ≥50%, activity limited by dyspnea, fatigue, or chest pain Exclusion criteria: SBP <110mm Hg and >180 mm Hg, current nitrates or PDE-5 inhibitors	Intervention: Isosorbide mononitrate (110) Comparator: Placebo (110)	 <u>1° endpoint</u>: Average daily activity assessed by accelerometer units during 120 mg phase. Nonsignificant trend for lower daily activity in the treatment group. (-381 accelerometer units; 95% Cl: -780–17; p=0.06) and significant decrease in h of activity/d (-0.30 h; 95% Cl: -0.55– -0.05; p=0.02) 	 No differences for any of the 3 doses on QoL scores, 6MWT and levels of NT-proBNP (trend unfavorable for nitrates) Limitations: Rapid dose escalation of study drug.
RELAX Redfield et al. 2013 (82) <u>23478662</u>	Aim: To ascertain effects of sildenafil on exercise capacity in pts with HF <i>p</i> EF. Study type:	Inclusion criteria: Age ≥18 on stable HF therapy, EF ≥50%, peak VO ₂ <60% normal and either nt-proBNP >400 or elevated	Intervention: Sildenafil (113) <u>Comparator</u> : Placebo (103)	 <u>1° endpoint</u>: Change in peak VO₂ from BL at 24 wk No difference between sildenafil (-0.20, IQR -1.7– 1.11) and placebo (-0.20, 	 No differences in clinical rank score or 6-min walk Limitations: Urinary cGMP levels were not increased in sildenafil group, raising questions about dosing. High prevalence of

	Double-blind <u>Size</u> : 216	PCWP <u>Exclusion criteria</u> : Systolic BP <110mm Hg and >180 mm Hg, MMI or revascularization within 60 d, eGFR <20 mL/min		IQR -0.70–1.0) • More worsening of renal function in sildenafil group (p=0.047)	chronotropic incompetence in study population.
TOPCAT Pitt et al. 2014 (83) <u>24716680</u> • New England Research Institutes Post-hoc analysis that captures differences in outcomes by geography - for reference list only	Aim: To assess the effects of spironolactone in pts with HF <i>p</i> EF. Study type: RCT Size: 3,445	Inclusion criteria: Symptomatic HF, Age ≥50y, LVEF ≥45% stratified according to - HF Hospitalization within past y - Elevated NPs Exclusion criteria: Renal disease (eGFR <30 or	Intervention: Spironolactone (1,722) Comparator: Placebo (1,723)	 <u>1° endpoint and results:</u> Composite of CV mortality, HF hospitalization, or aborted cardiac arrest. No difference with spironolactone vs. placebo 320 (18.6%) vs. 351 (20.4%), HR: 0.89; 95% CI: 0.77–1.04; p=0.138) 	 HF hospitalization was reduced with spironolactone 206 (12.0%) vs. 245 (14.2%), HR: 0.83; 95% CI: 0.69–0.99; p=0.04) Increased hyperkalemia (18.7% vs. 9.1%), decreased hypokalemia (16.2% vs. 22.9%) and more doubling of creatinine (10.2% vs. 7.0%) with spironolactone

TOPCAT Regional Analysis Pfeffer et al. 2015 (84) 25406305 Post-hoc analysis that captures differences in outcomes by geography	Aim: To assess regional differences in the effects of spironolactone in pts with HF <i>p</i> EF. Study type: RCT Size: 3,445	Inclusion criteria: Symptomatic HF, Age ≥50y, LVEF ≥45% stratified according to • HF Hospitalization within past y • Elevated NPs Exclusion criteria: Renal disease (eGFR <30 or creatinine >22 µmol/L (2.5 mg/dL), systemic illness with life expectancy <3 y. Specific co- existing conditions, meds, and acute events	Intervention: Spironolactone (1,722) Comparator: Placebo (1,723)	 <u>1° endpoint and results</u>: Composite of CV mortality, HF hospitalization, or aborted cardiac arrest across regions. 1° outcome events in 522 (29.5%) pts in the Americas and 149 (8.9%) in Russia/Georgia. 1° outcome event rates with spironolactone and placebo 10.4/100 pt y and 12.6/100 pt y in the Americas and 2.5/100 pt y and 2.3/100 pt y in Russia/Georgia. HR spironolactone vs. placebo 0.82; 95% CI: 0.69–0.98; p=0.026) in the Americas and 1.10 95% CI: 0.79– 1.51; p=0.12) in Russia/Georgia. 	 Spironolactone had markedly greater effects on BP (4.2 mm Hg drop vs. 0.6 mm Hg; p<0.001, potassium change relative to placebo (0.26 mmol/L vs. 0.08 mmol/L), and increase in creatinine (0.10 vs. 0.02 mg/dL; p<0.001) Limitations: post-hoc analysis
Chen et al. 2015 (85) 25598008	Aim: To assess effects of MRAs in pts with HF <i>p</i> EF. Meta-analysis Size: 14 RCTs with 6,428 pts	Inclusion criteria: Prospective, RCTs that enrolled adult pts with LVEF ≥40% (including post-MI and those with symptomatic or asymptomatic HF) with a study duration of ≥4 mo that assessed at least 1 clinical outcome of interest.	Intervention: MRAs (3,249) Comparator: Placebo (2,861) Or standard therapy (301) Or active comparator (31)	 <u>1° endpoint and results:</u> All-cause mortality and HF hospitalization No difference in all-cause mortality (RR: MRAs vs. placebo 0.90; 95% CI: 0.78–1.04; p=0.17) Reduced risk of HF hospitalization (RR: MRA vs. placebo 0.83; 95% CI: 0.70–0.98; p=0.03) <u>1° Safety endpoint :</u> More hyperkalemia with MRAs (12.2% vs. 6.2%, p<0.001) 	 MRAs improved QOL (weighted mean difference -5.2; 95% CI: -8.02.3). MRA's improved echo indices of LV function: E/e', E/A ratio, deceleration time, interventricular relaxation time Renal failure in 1.19% of pts with MRAs vs. 0.39% Gynecomastia in 2.81%R vs. 0.3% Limitations: discrepancies in definitions of HF<i>p</i>EF in different trials; heterogeneity of trial outcomes and their assessment, including follow-up duration; 1° outcome results driven by

					TOPCAT
PARAMOUNT Solomon et al. 2012 (61) 22932717	Aim: To address safety and efficacy of LCZ696 in pts with HF <i>p</i> EF. Study type: RCT Size: 308	Inclusion criteria: Pts ≥40 y of age, LVEF ≥45%, NYHA class II-III HF, NT-pro BNP >400 pg/mL Exclusion criteria: Previous EF <45%, isolated right HF, noncardiac dyspnea, CAD or CVD needed revascularization <3 mo Right HF due to pulmonary disease, dyspnea due to noncardiac causes, valvular/myocardial disease, CAD or CVD needing revascularization within 3 mo of screening.	Intervention: LCZ696 (149) Comparator: Valsartan (152)	 <u>1° endpoint</u>: Change in BNP at 12 wk Greater reduction with LCZ696 (ratio of change compared to valsartan 0.77; 95% CI: 0.64–0.92; p=0.001) <u>1° Safety endpoint</u>: Serious adverse events 15% in LCZ676 group and 20% in valsartan group (p=NS) 	 Effect persisted after adjustment for more lowering of BP in LCZ676 group Improvement in NYHA class at 36 wk in LCZ676 group compared to valsartan. Reduction of LA size at 36 wk in LCZ676 group compared to valsartan. BNP levels higher than in other HF<i>p</i>EF trials, perhaps because this was an entry criterion.

Date: Some studies added by chairs in December 2015, others added by the writing committee.

Data Supplement D. RCTs Comparing Anemia (Section 9.2)

Study Acronym;	Aim of Study;	Patient Population	Study Intervention	Endpoint Results	Relevant 2° Endpoint (if any);
Author;	Study Type;		(# patients) /	(Absolute Event Rates,	Study Limitations;
Year Published	Study Size (N)		Study Comparator	P values; OR or RR; &	Adverse Events
			(# patients)	95% CI)	

CONFIRM-HF	Aim:	Inclusion criteria:	Intervention:	1° endpoint:	2°Endpoints:
Ponikowski et al. 2015	To assess benefits	Pts at least 18 y,	FCM (152)	Change in 6MWT distance	Changes in NYHA class
(86)	and safety of long	NYHA class II or III,	- (-)	from BL to wk 24	• PGA
25176939	term FCM in iron-	LVEF≤45%,	Comparator:	Results: Change in 6MWT	6MWT distance
	deficient pts with	elevated NPs, ID	Placebo (152)	distance FCM vs. placebo of	Fatigue score
	HF	defined as ferritin		33±11 m (p=0.002)	• KCCQ
		<100 ng/mL, or			• EQ-5D
Vifor Inc.	Study type:	ferritin 100-			• Assessed at wk 6, 12, 24, 36, 52
ICON Clinical	RCT (1:1)	300 ng/mL if TSAT			 Rate of any hospitalization, rate of
Research	Size	<20%, Hb <15			hospitalization for any CV reason,
	<u>Size</u> : 304	mg/dL			and rate of hospitalization due to
	504	Exclusion criteria:			worsening HF;
		Pts in need of			 Time to first hospitalization for any
		transfusion, if not			reason, time to first hospitalization
		able to complete			for any CVCV reason and time to
		6MWT, uncontrolled			first hospitalization due to worsening
		HTN, infection,			HF;
		malignancy,			• Time to death for any reason, time
		impaired liver or			to death for any CV reason, and time
		renal function			to death due to worsening HF.
					Results:
					Significant improvements in NYHA
					class, PGA, QoL and Fatigue
					scores, 6 MWD up to 52 wk
					 Significant reduction in the risk of
					hospitalizations for deteriorating HF,
					HR: 0.39 (95% CI: 0.19–0.82)
					(p=0.009)
					 Preserved treatment effect across
					subgroups
					 No differences in adverse events
					when compared to placebo
					Study was not designed to test
					morbidity and mortality outcomes of
					the ID therapy with FCM

FAIR-HF	Aim:	Inclusion criteria:	Intervention:	1° endpoint:	• Improvement in the FCM group in
Anker et al. 2009	To evaluate the	Chronic HF	Ferric carboymaltose 200 mg	PGA at 24 wk	PGA and NYHA at wk 4 and 12
(87)	effects of	NYHA class II or III,	weekly until hemoglobin	Results: improvement in the	(p<0.001)
19920054	intravenous iron	 LVEF ≤40% (for pts 	was corrected (n=304)	FCM group compared to	 Mean improvement in 6MWT of
	(FCM) on HF	in NYHA class II) or		placebo	35±8m at 24 wk (p<0.001); also
	symptoms in pts	≤45% (for pts in	Comparator:	 50% much or moderately 	significant improvements at 4 and
	with systolic HF	NYHA class III),	Placebo (n=155)	improved vs. 28% (OR for	12 wk
	and ID, with and	Hemoglobin level		being in a better rank, 2.51;	 Significant improvement in the EQ-
	without anemia.	95–135 g/L		95% CI: 1.75–3.61;	5D and in KCCQ
		• ID		p<0.001)	
	Study type:			 NYHA class at 24 wk 	
	RCT (2:1)	Exclusion criteria:		Results: improvement in the	
	Size	 Uncontrolled HTN 		FCM arm compared to	
	<u>Size:</u> 459	 Other clinically 		placebo	
	400	significant heart		• 47% with NYHA I or II vs.	
		disease		30% in the placebo arm	
		 Inflammation 		(OR for improvement by 1	
		 Clinically 		class, 2.40; 95% CI: 1.55–	
		significantly		3.71; p<0.001)	
		impaired liver or			
		renal function.		<u>1° Safety endpoint</u> : Trend towards fewer HF	
				hospitalizations in the FCM	
				group (p=0.08)	
RED-HF	Aim:	Inclusion criteria:	Intervention:	1° endpoint:	Limitation: pts with severe anemia
Swedberg et al. 2013	To assess effects of	NYHA class II, III, or	Darbepoetin alfa (1,136)	Composite of death from	were excluded
(88)	darbepoetin alfa on	IV HF; LVEF≤40%;		any cause or hospitalization	were excluded
23473338	pts with systolic HF	Hgb: 9.0–12.0 g/dL;	Comparator:	for worsening HF	
	and anemia.	on guideline-	Placebo (1,142)	Results: 1° outcome	
Amgen		recommended HF		occurred in 576 pts in the	
-	Study type:	treatment.		darbepoeitin alfa group vs.	
	RCT			562 in the placebo group	
		Exclusion criteria:		(HR: 1.01; 95% CI: 0.90-	
	Size:	Transferrin saturation		1.13; p=0.87)	
	2,278	<15%, bleeding			
		or other causes of		<u>1° Safety endpoint</u> :	
		anemia, serum creatinine >3		 Increased thromboembolic 	
		mg/dL, BP		adverse events in the	
		ing/uL, Dr		treatment group (p=0.01);	

>160/100 mm Hg.	No significant increase in
, i i i i i i i i i i i i i i i i i i i	fatal/nonfatal strokes in
	treatment group and similar
	cancer-related adverse
	events between groups

Date: Chairs selected trials in December 2015. One trial added by writing committee.

Data Supplement E. RCTs Comparing HTN (Section 9.5)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% Cl)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
Xie et al. 2016 (89) <u>26559744</u>	Aim: To assess the efficacy and safety of intensive BP lowering strategies. Study Type: SR and meta- analysis Size: 19 trials with 44,989 pts; 3.8 y of follow- up.	Inclusion Criteria: RCTs with different BP targets or different BP changes between more vs. less intense therapy with at least 6 mo follow-up. Exclusion Criteria: Trials that did not assess a different target or relevant outcome.	5 RCTs (6,960 pts) enrolled only pts with DM and 6 trials (2,809 pts) specifically recruited pts with CKD.	 <u>1° Outcomes</u>: Major CV events, defined as MI, stroke, HF or CV death, separately and combined; nonvascular and all-cause mortality; ESRD; and adverse events; new onset microalbuminuria/macroalbuminu ria or change from micro- to macroalbuminuria and retinopathy in pts with DM. <u>Results</u>: Pts in the more intensive BP- lowering treatment group had mean BP 133/76 mm Hg compared with 140/81 mm Hg in the less intensive group. Intensive BP-lowering treatment achieved RR reductions for major CV events: 14% (95% CI: 4, 22), MI: 13% (95% CI: 0, 24), stroke: 22% (95% CI: 10, 32), albuminuria: 10% (95% CI: 3, 16), and retinopathy progression: 19% (95% CI: 0–34). However, more 	 <u>Study Limitations:</u> Only 6,960 pts with DM were included in the total study size of 44,989 pts. <u>Conclusions:</u> The absolute CV benefits were greatest in trials in which all enrolled pts had vascular disease, renal disease or DM. However, only 6,960 of the 44,989 pts had DM and no subanalysis for DM was provided; however, the outcome benefits were qualitatively most striking for pts with DM, CKD and/or vascular disease.

				intensive treatment had no clear effects on HF: RR: 15% (95% CI: -11, 34), CV death: 9% (-11, 26), total mortality: 9% (95% CI: -3, 19), or ESRD: 10% (95% CI: -6, 23). The reduction in major CV events was consistent across pt groups, and additional BP lowering had a clear benefit even in pts with SBP <140 mm Hg. The absolute benefits were greatest in trials in which all enrolled pts had vascular disease, renal disease, or DM. Serious adverse events associated with BP lowering were only reported by 6 trials and had an event rate of 1.2% per y in intensive BP lowering group pts, compared with 0.9% in the less intensive treatment group (RR: 1.35 (95% CI: 0.93, 1.97)). Severe hypotension was more frequent in the more intensive treatment regimen (RR: 2.68 (95% CI: 1.21, 5.89), p=0.015), but the absolute excess was small (0.3% vs. 0.1% per pt-y for the duration of follow-up).	
SPRINT Wright et al. 2015	Aim: To test the	Inclusion criteria: SBP ≥130 mm Hg,	Intervention: Intensive BP lowering	<u>1° Endpoint:</u>	Summary:
(90)	effectiveness of a	with upper limit	treatment to goal SBP	 Composite of MI, non-MI ACS, stroke, ADHF, CV death; HR: 	 More intensive SBP lowering to a goal of <120 mm Hg with
<u>26551272</u>	goal SBP <120	varying as number	<120 mm Hg (4,678)	0.75 (95% CI: 0.64, 0.89)	achieved mean of ~121 mm Hg
	mm Hg vs. a goal SBP <140 mm Hg	of pre-trial BP- lowering meds	Comparison:	 Lower BP target reduced 	resulted in less CVD and lower total mortality over 3.26 y in
	for the prevention	increased.	Standard BP lowering	composite outcome 243 pts	comparison with a goal SBP
	of CVD in pts with	Age ≥50 y Dresence of et leget	treatment to goal SBP	(1.65%/y) vs. higher target 319	<140 mm Hg and achieved SBP
	SBP ≥130 mm Hg at BL.	Presence of at least 1:	<140 mm Hg (4,678) • Net treatment difference	(2.19%/y), HR: 0.75; 95% CI: 0.64–0.89; p<.001) and death:	of ~135 mm Hg. • There were small increases in
		 Clinical or 	~3 drugs (2.8) on average	lower target 155 vs. 201, HR:	some expected SAEs. Perhaps
	Study type:	subclinical CVD	vs. 2 drugs (1.8) on	0.73; 95% CI: 0.60–0.90;	unexpected, a sizable increase

RCT <u>Size:</u> 9361 pts followed median of 3.26 y.	 CKD stage 3 or greater Age ≥75 Framingham General CVD risk ≥15% in 10 y Exclusion criteria: DM, history of stroke, ESRD (eGFR <20 	average • During the trial, mean SBP was 121.5 vs. 134.6.	 p=0.003) <u>Other endpoints:</u> Total deaths HR: 0.73 (95% CI: 0.60–0.90) 1° or death HR: 0.78 (95% CI: 0.67–0.90) Components of 1° composite mostly consistent in direction other than ACS – no difference. 	 in reduced eGFR in the non-CKD group and AKI/ARF overall was observed in the intensive group. While of uncertain etiology and significance, there is speculation this could be an acute hemodynamic effect, especially given the findings regarding albuminuria. Low target significantly reduced HF: HR: 0.62 (95% CI: 0.45–
	mL/min), anticipated survival <3 y		CKD outcomes:• 1° in CKD pts: reduction in GFR of ≥50% or ESRD HR: 0.89 (95% CI: 0.42, 1.87)• Incident albuminuria HR: 0.72 (95% 0.48, 1.07)• In pts without CKD: reduction in GFR ≥30% and to <60	 0.84; p=0.002) No difference in composite or individual renal outcomes with lowering of BP Limitations: Few pts were untreated at BL ~9%, so SPRINT provides little if any insight at present regarding BP lowering medication initiation for untreated people with SBP 130–139.
			 Adverse events: SAEs: 1.04, p=0.25 Significant absolute increases seen in intensive group for hypotension (1%), syncope (0.6%), electrolyte abnormality (0.8%), AKI/ARF (1.6%) over the study period. 1.7% fewer pts had orthostatic hypotension in intensive group, p=0.01. 	

SPRINT Senior	Aim:	Inclusion:	Intervention:	1 endpoint:	Limitations:
Williamson et al.	Intensive SBP goal	Men and women age	Medications and dietary	Composite CVD outcome (AMI,	Does not apply to nursing home
2016	<120mmHg) vs	75+; mean age	advice to achieve SBP of	non-MI ACS, Stroke, HF, CVD	patients or those with dementia
(91)	standard (SBP	79.8 y; 38%	<120 mm Hg	death.	
27195814	goal <140)	women; 17%			Conclusions:
		black, 74%	Comparator:	Results: 102 events in the	Intensive SBP is safe and effective
	Study Type:	Caucasian;	Medications and dietary	intensive treatment group vs 148	for lowering CVD events and
	RCT	Exclusions:	advice to achieve SBP of	events in the standard treatment	total mortality in persons age 75
		Nursing home	<140 mm Hg	group; HR: 0.66;	and older
	Size:	residents;		95%CI: 0.51–0.85 and all-cause	
	2,636	diabetes, Stroke,	Achieved SBP:	mortality (73 deaths vs. 107	
	_,	symptomatic HF in	Intensive= 123.4 mm Hg	deaths, respectively; HR: 0.67;	
	30% met criteria for	past 6 mo or EF	Standard= 134.8 mm Hg	95%CI: 0.49-0.91. No significant	
	being classified as	- <35%, dx or	5	difference in falls, orthostatic	
	ambulatory frail	treatment of		hypotension, or overall SAEs.	
	,	dementia,		NNT for primary outcome=27 and	
	Mean follow-up:	unintentional wt		NNT for all-cause mortality=41	
	3.1 y	loss >10% in past		,	
	,	5 mo. SBP<110			
		after standing 1			
		min, expected			
		survival <3y			
TOPCAT Regional	<u>Aim</u> :	Inclusion criteria:	Intervention:	1° endpoint and results:	 Spironolactone had markedly
Analysis	To assess regional	Symptomatic HF,	Spironolactone (1,722)	Composite of CV mortality, HF	greater effects on BP (4.2 mm
Pfeffer et al. 2015	differences in the	Age ≥50y, LVEF		hospitalization, or aborted cardiac	Hg drop vs. 0.6 mm Hg; p<0.001,
(84)	effects of	≥45% stratified	Comparator:	arrest across regions.	potassium change relative to
<u>25406305</u>	spironolactone in	according to	Placebo (1,723)	• 1° outcome events in 522	placebo (0.26 mmol/L vs. 0.08
	pts with HF <i>p</i> EF.	 HF Hospitalization 		(29.5%) pts in the Americas and	mmol/L), and increase in
		within past y		149 (8.9%) in Russia/Georgia. 1°	creatinine (0.10 vs. 0.02 mg/dL;
Post-hoc analysis that	Study type:	 Elevated NPs 		outcome event rates with	p<0.001)
captures	RCT			spironolactone and placebo	 Limitations: post-hoc analysis
differences in		Exclusion criteria:		10.4/100 pt y and 12.6/100 pt y in	
outcomes by	Size:	Renal disease		the Americas and 2.5/100 pt y	
geography	3,445	(eGFR <30 or		and 2.3/100 pt y in	
		creatinine >22		Russia/Georgia. HR	
		µmol/L (2.5		spironolactone vs. placebo 0.82;	
		mg/dL), systemic		95% CI: 0.69–0.98; p=0.026) in	
		illness with life		the Americas and 1.10 95% CI:	
		expectancy <3 y.		0.79–1.51; p=0.12) in	
		Specific co-existing		Russia/Georgia.	

		conditions, meds, and acute events			
Law et al., 2009 (92) <u>19454737</u>	Study type: Meta-analysis of use of BP lowering drugs in prevention of CVD from 147 randomized trials Size: Of 147 randomized trials of 464,000 pts, 37 trials of beta blockers in CAD included 38,892 pts, and 37 trials of other antihypertensive drugs in CAD included 85,395 pts	Inclusion criteria: The database search used Medline (1966- Dec. 2007 in any language) to identify randomized trials of BP lowering drugs in which CAD events or strokes were recorded. The search also included the Cochrane Collaboration and Web of Science databases and the citations in trials and previous meta- analyses and review articles. Exclusion criteria: Trials were excluded if there were <5 CAD events and strokes or if treatment duration was <6 mo.	<u>1° endpoint:</u> CAD events; stroke In 37 trials of pts with a history of CAD, beta blockers reduced CAD events 29% (95% CI: 22%–34%). In 27 trials in which beta blockers were used after acute MI, beta blockers reduced CAD events 31% (95% CI: 24%–38%), and in 11 trials in which beta blockers were used after long term CAD, beta blockers insignificantly reduced CAD events 13%. In 7 trials, beta blockers reduced stroke 17% (95% CI: 2%–25%) in 11 trials of thiazide diuretics, 17% (95% CI: 11%–22%) in 21 trials of ACE inhibitors, insignificantly 14% in 4 trials of angiotensin receptor blockers, and 15% (95% CI: 8%–22%) in 22 trials of CCBs. Stroke was reduced 38% (95% CI: 28%–47%) in 10	• With the exception of the extra protective effect of beta blockers given shortly after a MI and the minor additional effect of CCBs in preventing stroke, all the classes of BP lowering drugs have a similar effect in reducing CAD events and stroke for a given reduction in BP.	

			trials of thiazide diuretics, 22% (95% CI: 8%–34%) in 13 trials of angiotensin- converting enzyme inhibitors, and 34% (95% CI: 25%–42%) in 9 trials of CCBs.		
Aronow et al. 1997 (93) <u>9230162</u>	Aim: To determine effect of propranolol vs. no propranolol on mortality plus nonfatal MI in pts with prior MI and HF <i>p</i> EF	Inclusion criteria: Pts ≥62 y with MI and LVEF ≥40% and HF NYHA class II or III treated with diuretics and ACE inhibitors for 2 mo	Intervention: 79 pts were randomized to treatment with propranolol Comparator: 79 pts were randomized to no propranolol. All pts continued diuretic and ACE inhibitor therapy.	<u>1° endpoint</u> : At 32-mo mean follow-up, multivariate Cox regression analysis showed that compared with no propranolol, propranolol reduced mortality 35% (p=0.03) and mortality plus nonfatal MI 37% (p=0.018)	Relevant 2° Endpoint: At 1-y follow-up, LVEF was increased by propranolol from 57% to 63% (p<0.001) and LV mass was decreased by propranolol from 312 grams to 278 grams (p=0.001) Propranolol was stopped because of adverse effects in 11 of 79 pts (14%)
Van Veldhuisen et al. 2009 (94) <u>19497441</u>	Aim: To determine the effect of nebivolol vs. placebo in pts with HF <i>r</i> EF and HF <i>p</i> EF	Inclusion criteria: Pts ≥70 y history of HF and HF /EF or HF <i>p</i> EF	Intervention/Comparator: 1,359 pts with a history of HF/EF and 752 pts with a history of HF/DEF were randomized to nebivolol or to placebo	<u>1° endpoint:</u> At 21-mo follow-up, the primary endpoint of all-cause mortality or CV hospitalization was reduced by nebivolol 14% (95% CI: 0.72– 1.04) in pts with HF/EF and 19% (95% CI: 0.63, 1.04) in pts with HF <i>p</i> EF	Relevant 2° Endpoint: HR for reduction of all-cause mortality by nebivolol: 0.84 (95% Cl: 0.66–1.08) for HF <i>r</i> EF and 0.91 (95% Cl: 0.62–1.33) for HF <i>p</i> EF
Yusuf et al. 2003 (78) <u>13678871</u>	Aim: To determine the effects of candesartan vs. placebo in pts with HF <i>p</i> EF	Inclusion criteria: 3,023 pts, mean age 67 y, with HF <i>p</i> EF and NYHA class II-IV HF	Intervention/Comparator: 3,023 pts were randomized to candesartan or placebo	<u>1° endpoint:</u> At 36.6 m follow-up, the primary outcome of CV death or hospitalization for HF was reduced 11% (p=0.118) by candesartan	Relevant 2° Endpoint: Hospitalization was reduced 16% (p=0.047) by candesartan
Massie et al. 2008 (80) <u>19001508</u>	<u>Aim</u> : To determine the effect of irbesartan vs. placebo on all- cause mortality or hospitalization for a CV cause in pts with HF <i>p</i> EF	Inclusion criteria: Pts 60 y and older with HF <i>p</i> EF and NYHA class II, III, or IV HF	Intervention/Comparator 4,128 pts were randomized to irbesartan or placebo	<u>1° endpoint:</u> At 49.5-mo follow-up, the primary outcome of all-cause mortality or hospitalization for CV cause was reduced 5% by irbesartan (p=0.35)	Relevant 2° Endpoint: Irbesartan did not significantly reduce the secondary outcomes of death from HF or hospitalization for HF, death from any cause and from CV causes, and quality of life

Piller LB, et al., 2011 (76) <u>21969009</u>	Aim: To determine mortality rates in pts who developed HF in ALLHAT	Inclusion criteria: 1,761 pts, mean age 70 y, developed HF during ALLHAT	Intervention/Comparator At 8.9-y mean follow-up, 1,348 of 1,761 pts (77%) with HF died	<u>1° endpoint:</u> Post-HF all-cause mortality was similar for pts treated with chlorthalidone, amlodipine, and lisiopril. 10-y adjusted rates for mortality were 86% for amlodipine, 87% for lisinopril, and 83% for chlorthalidone	Relevant 2° Endpoint: All-cause mortality rates were similar for those with HF <i>r</i> EF (84%) and for those with HF <i>p</i> EF (81%) with no significant differences by randomized treatment arm
Lv et al. 2013 (95) <u>23798459</u>	MA of RTC that randomly assigned individuals to different target BP levels	15 trials including a total of 37,348 pts.	 7.5/4.5 mm Hg BP difference. Intensive BP lowering achieved. <u>RR for</u> Major CV events: 11%; 95% CI: 1%–21%) MI: 13%; 95% CI: 0%– 25% Stroke: 24%; 95% CI: 8%–37% ESRD: 11%; 95% CI: 3%–18% Albuminuria: 10%; 95% CI: 4%–16% Retinopathy 19%; 95% CI: 0%–34% p=0.051 	More intensive strategy for BP control reduced cardio-renal end point	

Date: Chairs selected trials in October 2016.

Data Supplement F. Nonrandomized Trials for Hypertension (Section 9.5)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Primary Endpoint and Results (P values, OR or RR & 95 % Cl)	Summary / Conclusion / Comments
Thomopoulos et al. 2016 (96) <u>26848994</u>	Meta-analysis of RCT's of more versus less intense BP control	16 trials (52,235 pts) compared more vs. less intense treatment 34 (138,127 pts) active vs. placebo	 More intense BP Stroke RR: 0.71; 95% CI: 0.60–0.84) Coronary heart disease RR: 0.80; 95% CI: 0.68–0.95) Major CV events RR: 0.75; 95% CI: 0.68–0.85 CV mortality RR: 0.79; 95% CI: 0.63–0.97 Stratification of SBP cutoffs (150, 140 and 130 	 Intensive BP reduction improves CV outcomes compared to less intense Achieved BP of <130/80 mm Hg may be associated with CV benefit.

		mmHg) showed that a SBP/DBP differer _10/_5mmHg across each cutoff reduce all outcomes	
--	--	--	--

Date: Chairs selected trials in October 2016.

Data Supplement G. RCTs Comparing Treatment of Sleep Disorders (CPAP makers) (Section 9.6)

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P values; OR or RR; & 95% Cl)	Relevant 2° Endpoint; Study Limitations; Adverse Events
SAVE McEvoy et al. 2016 (97) <u>27571048</u>	Aim: To whether treatment with CPAP prevents major CV events. Study type: RCT with 1 wk run-in on sham CPAP Size: n=2,717	Inclusion criteria: • Adults 45 - 75 y of age • Moderate-to-severe OSA • Coronary or cerebrovascular disease Exclusion criteria:	Intervention: CPAP treatment plus usual care (CPAP group) Comparator: Usual care alone (usual-care group)	 <u>1° endpoint</u>: Composite of death from CVD, MI, stroke, or hospitalization for UA, HF, or TIA <u>Results:</u> Duration of CPAP=3.3 h/night; AHI events/h decreased from baseline to end of follow up at 3.7 y, 29.0–3.7 events/h Primary endpoint – no significant difference in CPAP vs usual-care group (n=229, 17.0% vs. n=207; 15.4%; HR: 1.10 with CPAP; 95% CI: 0.91–1.32; p=0.34). No significant difference in any individual or other composite CV end point. CPAP significantly reduced snoring and daytime sleepiness and improved health-related quality of life and mood. 	Secondary end points: • Other CV outcomes • Health-related quality of life • Snoring symptoms • Daytime sleepiness • Mood Study Limitations: • Primarily men with moderate-to-severe OSA and minimal sleepiness Adverse Events:
ORBIT-AF Holmqvist et al. 2015 (98) <u>25965712</u>	Aim: 1) Define frequency of diagnosed	Inclusion criteria: • ≥18 years of age • Electrocardiographic evidence of AF	Intervention: N/A Comparator: N/A	1° endpoint: All-cause mortality; First all-cause hospitalization; Composite of first event of CV	Secondary end points: <u>N/A</u> Study Limitations:

OSA among		Multicenter,	death, stroke/non-central	 Voluntary, observational
nationwide	Exclusion criteria:	ambulatory-based	nervous system embolism, TIA,	study - selection &
AF				5
	• Life expectancy of <6 months or	registry	or MI;	reporting biases
population;	AF secondary to reversible		• First major bleed within 2 years	 No randomization -
2) Determine	conditions		of baseline enrollment in registry	Voluntary, observational
whether OSA				study - selection &
is associated			Results:	reporting biases
w/:			Frequency of diagnosed OSA	 OSA diagnosis made on
a) Worse			among nationwide AF population	basis of physician report
outcomes;			• 18% (n =1,841)	& medical records.
b) Arrhythmic			OSA associations w/ outcomes	 No data on average
AF			Higher risk of:	duration of CPAP use per
progressi			 Hospitalization (43 vs 35 	night
on; &			events/100 patient-years	 Maturation – changes in
3) Determine			among patients without OSA	subjects over 2 years not
whether			[adjusted hazard ratio (HR),	accounted for in data
CPAP			1.12; 95% confidence interval	
treatment is			(CI), 1.03-1.22; p=.0078]	Adverse Events:
associated w/			No higher risk of:	N/A
outcomes in			o Death (HR, 0.94; 95% CI,	
patients w/			0.77-1.15; p=.54);	
AF & OSA.			 Composite of CV death, 	
			stroke/non-central nervous	
Study type:			system embolism, TIA, or MI	
Prospective			(HR, 1.07; 95% CI, 0.85-1.34;	
descriptive,			p=.57);	
correlational /			 First major bleeding (HR, 1.18; 	
comparative,			95% CI, 0.96-1.46; p=.11)	
time-series			OSA associations w/ AF	
design			progression	
Data			 Not associated w/ higher risk of 	
collection at			AF progression (HR, 1.06; 95%	
enrollment &			Cl, 0.89-1.28; p=.51).	
6-month			<u>CPAP treatment association w/</u>	
intervals for			outcomes in patients w/ AF &	
minimum of 2			OSA	
years			Less likely to progress to more	
			permanent forms of AF versus	
<u>Size</u> : Nationally			patients w/out CPAP (HR, 0.66;	
representative			95% Cl, 0.46-0.94; p=.021).	

	sample enrolled				
	consecutively				
	• n=10,132 w/				
	AF				
	o n=1,841 w/				
	AF & OSA ○ n=1,837				
	patients w/				
	OSA &				
	complete				
	CPAP data				
	o n =1,763				
	patients w/				
	OSA & 2-				
	year outcomes				
	data				
	o n=937				
	patients w/				
	AF, OSA, &				
	CPAP				
	treatment				
	<u>Sites</u> : 176				
	national sites				
	that w/ provider				
	& geographic				
	heterogeneity				
SERVE-HF	<u>Aim</u> :	Inclusion criteria:	Intervention:	<u>1° endpoint</u> :	<u>2° Endpoint</u>
Cowie et al. 2015	Effects of	• Chronic HF (defined as ≥12 wk	Adaptive servo	Death from any cause	CV death
(99) 26323938	adaptive servo- ventilation in	since diagnosis) according to	ventilation use ≥5h/night, 7d/wk.	Lifesaving CV intervention	Unplanned hospitalization
20323330	HF pts with	current ESC guidelines ● LVEF ≤45%	(n=666)	(cardiac transplantation,	from any cause
ResMed	reduced EF	 ■ LVEF ≤43 % ■ Hypopnea index of ≥10/h 	(implantation of a ventricular assist device, resuscitation after sudden	 Time to death from CV causes
The Clinical	and CSA	 Stable, GDMT 	Comparator:	cardiac arrest, or appropriate	 Change in NYHA class
Research Institute		NYHA class III or IV, or NYHA	GDMT (n=659)	lifesaving shock) or	Change in 6-MWT (both at
GmbH	Study type:	class II with ≥ 1 hospitalization for		Unplanned hospitalization for HF	follow-up visits).
	RCT	HF in the last 24 mo		Significant Results	General QoL (EuroQOL)
	Size:	 No hospitalization for HF in 4 wk 		All-cause mortality was higher	HF-specific QoL (MLWHF)
	<u>5128</u> .	prior to enrolment		with the intervention (34.8%) than	 Daytime sleepiness

1,325	Optimized GDMT	control (29.3%; HR: 1.28; 95% CI:	(Epworth Sleepiness Scale)
1,020	 Optimized GDM1 No new class of disease- 	1.06–1.55; p=0.01).	
	 No new class of disease- modifying drug for prior ≥4 wk 	• CV mortality was higher with the	Limitations:
	• AHI >15/h with \geq 50% central	intervention (29.9%) than control	Unblinded study - more
	• AFI > 15/11 with ≥50% central events and a central AHI ≥10/h	(24.0%; HR: 1.34; 95% CI: 1.09–	likely to favor treatment
		1.65; p=0.006).	group, particularly for QOL,
	Exclusion criteria:	6MWT decreased over time and	but no QOL improvement
	Significant COPD with a forced	were significantly lower with the	seen
	expiratory volume in 1 s in 4 wk	intervention than with the control	HF pts with reduced EF only
	before randomization	(p=0.02).	HF pts with predominantly
	 O₂ saturation ≤90% at rest during 	Daytime sleepiness decreased	CSA not obstructive sleep
	d	over time and was significantly	apnea.
	Currently receiving PAP therapy	lower with the intervention than	Sample had very limited # of
	Cardiac surgery, PCI, MI or UA	with the control (p<0.001).	women but reflects
	within the previous 6 mo		epidemiology of CSA with
	Cardiac resynchronization	Non-Significant Results	HF/EF
	therapy implantation scheduled or	 Unplanned hospitalization for HF 	
	performed within 6 mo prior to	was not significantly higher with	
	randomization	the intervention (43.1%) than	
	• TIA or stroke within the previous	control (41.3%; HR: 1.13; 95% CI:	
	3 mo	0.95–1.33; p=0.16)	
	• 1° hemodynamically-significant	Of the lifesaving CV interventions,	
	uncorrected VHD (obstructive or	none were significantly higher with	
	regurgitant) or any valvular	the intervention than control	
	disease expected to require	(p=0.08–0.61)	
	surgery during the trial;	Unplanned hospitalization for any agues was not significantly lower	
	Acute myocarditis/pericarditis	cause was not significantly lower	
	within the previous 6 mo	with the intervention (67.9%) than control (68.0%; HR: 1.05; 95% CI:	
	Untreated or therapy-refractory		
	restless legs syndrome	• The NYHA class change was not	
	Contraindication to the use of	significantly different with the	
	AutoSet CS2 because of	intervention than with the control	
	symptomatic hypotension or	(p=0.46)	
	significant intravascular volume	General QoL trends were not	
	depletion or pneumothorax or	significantly higher with the	
	pneumomediastinum	intervention than with the control	
	Pregnancy	(p=0.09).	
		HF-specific QoL trends were not	
		significantly higher with the	

				intervention than with the control	
Arzt et al. 2007 (100) <u>17562959</u>	Aim: Investigate whether suppression of CSA below threshold by CPAP would LVEF & ht tx- free survival. Study type: Post hoc analysis of RCT Size:100	Inclusion criteria: • Age 18 to 79 y • NYHA II-IV • HF due to ischemic, hypertensive, or idiopathic DCM • Stabilized w/ optimal medical therapy for ≥1 mo • LVEF <40% • CSA Exclusion criteria: • Pregnancy • MI • Unstable angina • Cardiac surgery w/in 3 mo of enrollment • OSA	Intervention: • CPAP=CSA suppressed, n=57 • CPAP=CSA suppressed, n=43 Comparator: Control, n=110:	intervention than with the control (p=0.92). 1° endpoint: • Transplant free survival - Combined rate of all-cause mortality & ht tx Significant Results 1° endpoint: Transplant free survival • Significantly different between 3 groups (p=0.016) • Significantly higher in CPAP- suppressed vs. control group (p<0.043) • No difference between CPAP- unsuppressed vs. control group (p<0.26) 2° endpoint: •AHI • AHI significantly > reduction in both CPAP-suppressed (p<0.001) and CPAP-unsuppressed (p<0.001) and CPAP-unsuppressed (p<0.001) and CPAP-unsuppressed (p<0.002) than control groups • Mean nocturnal SaO2 • Mean nocturnal SaO2	 <u>2° endpoint:</u> AHI Mean nocturnal SaO2 LVEF <u>Eimitations:</u> Post hoc analysis Stratification of CPAP-treated pts based on polysomnogram performed 3 mo after randomization. Because suppressed and unsuppressed status could not be ascertained until completion of PSG, events that occurred during the first 3 mo could not be included The CPAP-CSA-suppressed group was younger, had a lower AHI, and had a slightly lower proportion of central events than the CPAP CSA-unsuppressed group
				group LVEF	

CPAP for CSA & HF (CANPAP) Bradley et al. 2005 (101) <u>16282177</u>	Aim: Test long-term treatment of CSA w/ CPAP in HF pts receiving optimal medical therapy on combined rates of death & ht tx. Study type: 11 center RCT Size: 258	Inclusion criteria: • 18-79 y • NYHA II-IV • HF due to ischemia • HTN, Idiopathic DCM • Stable condition • Optimal medical therapy for 1+ mon • LVEF <40% • CSA w/ ≥15 AHI >50% of AHI had to be central. Exclusion criteria: • Pregnancy • MI • UA • Cardiac surgery within prior 3 mon, OSA	Intervention: CPAP n=128 Comparator: No CPAP n=130	 LVEF significantly increased over time in CPAP-suppressed group (p<0.001) LVEF significantly increased in CPAP-suppressed vs. CPAP- unsuppressed (p=0.006) and vs. control (p<0.001) groups. No significant difference between CPAP-unsuppressed and control group (p=0.984) <u>1° endpoint</u>: Transplant free survival No significant difference in transplant free survival between CPAP and control groups (p=0.54) <u>2° endpoints</u>: Hospitalizations: No significant difference between CPAP and control groups (p=0.45) EF: Significant increase in EF between CPAP vs. control groups (p=0.02) Frequency of apnea and hypopnea episodes Significant reduction between CPAP vs. control groups (p=0.001) Mean Nocturnal SaO2 Significant increase between CPAP vs. control groups (p=0.001) Mean Nocturnal SaO2 Significant increase in 6MWT: Significant increase in 6MWT between CPAP vs. control groups (p=0.016) QoL: No significant difference between CPAP and control groups 	 <u>2° endpoints:</u> Hospitalizations EF Frequency of apnea and hypopnea episodes Mean nocturnal SaO₂ 6MWT QoL Neurohormones – norepinephrine and atrial NP <u>Limitations:</u> Underpowered because trial stopped early for low enrollment
---	--	---	---	--	---

Ruttanaumpawan et al. 2009 (102) <u>19189783</u>	Aim: To determine whether attenuation of CSA by CPAP in pts w/ HF reduces the frequency of arousals from sleep or improves sleep structure. Study type: RCT Size: 205	Inclusion criteria: Age 18 - 79 y of age; NYHA II -IV HF due to ischemic, hypertensive, or idiopathic DCM, stabilized on optimal medical therapy ≥1 mo LVEF <40% by radionuclide angiography CSA defined as an AHI ≥15, w/ >50% central apneas & hypopneas Exclusion criteria: Pregnancy MI UA Cardiac surgery within 3 mo of enrollment OSA	Intervention: CPAP n=97 Comparator: Control n=108	 Neurohormones: Norepinephrine Significant reduction in CPAP vs. control groups (p=0.009) Atrial NP: No significant difference between CPAP and control groups <u>1° endpoint</u>: AHI (central and obstructive) Mean and lowest SaO2 <u>Significant Results</u> In the CPAP group, Central and obstructive AHI decreased significantly <u>over BL</u> and vs. the control group (p<0.001) Mean and lowest SaO2 improved in both the CPAP (p<0.001) and control (p<0.04) but the improvement was significantly better in the CPAP vs. the control group (p<0.001). <u>2° endpoints:</u> No significant improvement in arousals from sleep or sleep structure within or between groups (p=0.14–0.99) 	 <u>2° endpoints:</u> Arousals from sleep Sleep structure (time in bed, sleep period time, total sleep time, sleep efficiency, sleep onset latency, percentage in each sleep stage, periodic leg movement index) <u>Limitations:</u> 2° analysis of CANPAP data Did not classify arousals as being respiratory or non-respiratory related, and did not examine their timing.
Kaneko et al. 2003 (103) <u>12660387</u>	Aim: To determine the effect of CPAP on LVEF when awake and daytime BP in pts with HF and OSA Study type: RCT	 Inclusion criteria: HF due to ischemic or nonischemic dilated CM for >6 mo; LVEF <45% by radionuclide angiography NYHA class II–IV; Absence, in last 3 mo, of HF exacerbations while receiving optimal pharmacologic therapy at highest tolerated doses; 	Intervention: CPAP n=12 Comparator: Control n=12	1° endpoint: • LVEF when awake • LVEDD • LVESD • Heart rate • Daytime BP Significant Results 1° endpoint: LVEF when awake	 <u>2° endpoint:</u> BMI Episodes of apnea and hypopnea Total Obstructive Central Desaturation index (# hr of sleep) Lowest oxyhemoglobin saturation (%)

	a OSA defined on 200 enjoydes of	- Significant increase in CDAD	a Total alaan tima
Size : 24	 OSA defined as ≥20 episodes of apnea and hypopnea /h of sleep of 	 Significant increase in CPAP (p<0.001) but not control group 	 Total sleep time Stage I and II sleep (% of
<u>•</u>	which >50% were obstructive	and difference between groups	total sleep time)
		was significant (p=0.009)	Stage III and IV sleep (% of
	Exclusion criteria:		total sleep time)
	 1° valvular heart disease; 	LVEDD	REM sleep (% of total sleep
	 Presence of implanted cardiac 	 No significant difference for either 	time)
	pacemaker;	group or between groups	 Arousals/hr of sleep
	• UA;		
	• MI:	LVESD	Limitations:
	Cardiac surgery within 3 mo of	 Significant reduction in CPAP (p=0.009) but not control group 	No placebo
	enrollment	and difference between groups	 Small sample size
		was significant (p=0.02)	- Dto upblinded to group
		······································	 Pts unblinded to group
		Heart Rate	
		 Significant decrease in CPAP 	
		(p=0.007) but not control group	
		and difference between groups	
		was significant (p=0.02)	
		Daytime BP	
		Significant decrease in systolic BP	
		in CPAP (p=0.02) but not control	
		group and difference between	
		groups was significant (p=0.008)	
		No significant difference in	
		diastolic BP for either group or	
		between groups	
		<u>2° endpoint:</u>	
		BMI	
		No significant difference for either group or between groups	
		group or between groups	
		Episodes of apnea and hypopnea	
		Total	
		Significant reduction in CPAP	
		(p<0.001) but not control group	
		and difference between groups	

was significant (p=0.002)
Obstructive
Significant reduction in CPAP
(p<0.001) but not control group
and difference between groups
was significant (p<0.001)
Central
 No significant difference for CPAP
group or between groups
Desaturation index (# hr of sleep)
 Significant reduction in CPAP
(p<0.001) but not control group
and difference between groups
was significant (p=0.008)
Lowest oxyhemoglobin
saturation (%)
 Significant increase in CPAP
(p=0.004) but not control group
and difference between groups
was significant (p=0.01)
Total sleep time
 No significant difference for CPAP
group or between groups
Stage I and II sleep (% of total
sleep time)
 No significant difference for CPAP
group or between groups
Stage III and IV sleep sleep (% of
total sleep time)
 No significant difference for CPAP
group or between groups
REM sleep (% of total sleep time)

Mansfield et al. 2004 (104) <u>14597482</u>	Aim: To assess long- term effect of OSA treatment with nocturnal CPAP on systolic heart function, sympathetic activity, BP, and QoL in pts with HF Study type: RCT Size: 44	Inclusion criteria: • HF due to ischemic or nonischemic dilated CM for >6 mo; • LVEF <45% by radionuclide angiography • NYHA class II–IV; • Absence, in last 3 mo, of HF exacerbations while receiving optimal pharmacologic therapy at highest tolerated doses; • OSA defined as ≥20 episodes of apnea and hypopnea /h of sleep of which >50% were obstructive Exclusion criteria: • 1° valvular heart disease; • Presence of implanted cardiac pacemaker; • UA; • MI: • Cardiac surgery within 3 mo of enrollment	Intervention: CPAP X 3 mo n=19 Comparator: Control n=21	group or between groups Arousals/h of sleep • Significant reduction in CPAP (p=0.003) but not control group and difference between groups was significant (p=0.03) <u>1° endpoint</u> : • LVEF • Overnight urinary norepinephrine excretion • BP • QoL <u>Significant Results</u> <u>1° endpoint</u> : LVEF • Significant improvement in CPAP group (p<0.001) and vs. control group (p=0.04) Overnight urinary norepinephrine excretion • Significant reduction in CPAP group (p<0.05) and vs. control group (p=0.036) BP • No significant difference in CPAP group or between groups QoL • Significant improvements in most domains within CPAP group SF-36 • Significant improvements between groups in 4/8 domains • Physical (p=0.03) • Vitality (p=0.02)	 <u>2° endpoint:</u> Peak Vo2 NYHA class Epworth sleepiness scale BMI AHI events per h Minimum SpO2 saturation <u>Limitations:</u> No placebo Significant difference between groups in peak Vo2 and mean BP at BL Dropout rate = 27% Higher than expected death rate Higher than expected rate of interventions initiated that may have effected end points Small sample size with only 3 females
---	---	---	---	--	---

Chronic HF questionnaire
 Significant improvements between
groups in 3/4 domains
o Fatigue (p=0.01)
○ Emotional well-being (p=0.02)
 ○ Disease mastery (p=0.02)
2° endpoint:
Peak Vo ₂
No significant difference in CPAP
group or between groups
NYHA class
No significant difference CPAP
group or between groups
Epworth sleepiness scale
 Significant reduction in CPAP vs.
control group (p=0.01)
BMI
No significant difference CPAP
group or between groups
AHI events per h
Significant reduction in CPAP
group (p<0.001) and vs. control
group (p<0.001)
Minimum SpO ₂ saturation
 Significant improvement in CPAP
group (p<0.001) and vs. control
group (p=0.001)

Date: Study selected by the chairs in December 2015 and some trials added by the writing committee.

Study Name,	Aim of Study	Study Type	Background	Study Size	Etiology	Patient	Population	E	Endpoints	Mortality	Trial Duration	Absolute Benefit	P Values & 95% CI:
Author, Year			Therapy Pretrial standard treatment	N (Total) n (Experimental) n (Control)	Ischemic/ NonIschemic	Inclusion Criteria	Exclusion Criteria	Primary Endpoint	Secondary Endpoint	1st Year Mortality	(Years)		
CONSENSUS 1987 <u>2883575</u> (105)	To Evaluate influence of enalapril on prognosis of NYHA class IV HF	RCT	Diuretics (spironolactone 53%, mean dose 80mg), digitalis (93%), other vasodilators, except ACEI (ie, nitrates 46%)	253; 127;126	CAD 73%	Severe HF/symptoms at rest/NYHA class IV; Increased heart size >600 mL; BP: 120/75; HR: 80; AF 50%	APE; hemodynamically import aortic/MV stenosis; MI w/in prior 2 mo Unstable angina; planned cardiac surgery; right HF b/c of pulm disease; Cr >300 mmol/L	Mortality	Change in NYHA-FC, LV size, Cr level	52% placebo group and 36% enalapril group (6 mo mortality: 26% in enalpril group and 44% in placebo group)	0.51 y	N/A	Crude mortality at end of 6 mo (primary endpoint), 26% in enalapril group and 44% in placebo group—40% reduction (p =0.002). Mortality was reduced by 31% at 1 y (p=0.001)
10 y FU of CONSENSUS 1999 <u>10099910</u> (106)	Report on the survival at the 10-y follow up of the pts randomized in CONSENSUS. (1st study to show prognostic improvement by an ACEI. Pts in NYHA class IV HF treated with enalapril or placebo. After study completion all pts were offered open- label enalapril therapy).	10-y open- label follow- up study (via completion of a questionnaire) on the survival status of pts in CONSENSUS -a RCT.	All pts were offered open-label enalapril therapy	315; 77; 58		253 randomized pts included in analysis of time from randomization to death; Survivors (135) of the double-blind period included in analysis of the time from end of double-blind period to death; Severe, NYHA IV		Mortality			10 y		5 pts, all in the enalapril group, were long-term survivors (p=0.004). Averaged over the trial (double-blind plus open-label extension) risk reduction was 30% (p=0.008), 95% CI: 11% - 46%. At end of double-blind study period, mortality considerably higher among pts not receiving open ACEI therapy
SOLVD 1991 <u>2057034</u> (107)	Study the effect of enalapril on mortality and hospitalization in pts with chronic HF and EF <35%	RCT	Diuretics + Digoxin	2569; 1285; 1284	Ischemic heart disease 72%	LVEF <35%; Mild to severe (11% class I/<2% class IV); LVEF 25%; BP: 125/77; HR: 80; AF: 8-12%	Age >80 y; Unstable angina; MI w/in past mo; Cr>2.0 mg/dL	Mortality	Hospitalizations; Incidence of MI; Mortality by specific causes; Combined mortality and morbidity from both SOLVD+/SOLVD-	15.70%	3.45 y	Treating 1000 SOLVD+ pts with enalapril for ~3 y would save ~50 premature deaths and 350 hospitalizations.	Reduced mortality by 16%; (95% CI, 5-26%; p=0.0036)

2013 HF Guideline Data Supplement 18. ACE Inhibitors (Section 7.3.2.2)

SOLVD 1992 <u>1463530</u> (108)	Study effect of ACEIs on total mortality and mortality from CV causes, the development of HF, and hospitalization for HF in pts with EF \leq 35%	RCT	No drug treatment for HF	4228; 2111; 2117	History of ischemic heart disease 85%	EF <35%; Asymptomatic; NYHA class I (67%) + II; EF: 28%; BP: 126/78; HR: 75; AF: 4%	As per SOLVD+	Mortality; Combined mortality and the incidence of HF and rate of hospitalization for HF	Incidence of HF and rate of hospitalization for HF	
SOLVD F/U 2003 <u>12788569</u> (109)	12-y FU of SOLVD to establish if the mortality reduction with enalapril among pts with HF was sustained, and whether a subsequent reduction in mortality would emerge among those with asymptomatic ventricular dysfunction.	12 y f/u of RCTs [SOLVD+ and SOLVD-]	N/A	6784; 3391; 3393	N/A	Participation in SOLVD+ and SOLVD- Asymptomatic to severe; NYHA I-IV	N/A	Mortality	N/A	N/A
ATLAS 1999 <u>10587334</u> (110)	To compare the efficacy and safety of low and high doses of ACEI on the risk of death and hospitalization in chronic HF. than the large doses that have been shown to reduce morbidity and mortality in pts with HF. AIM: Investigate if low doses and high doses of ACEIs have similar benefits.	RCT	N/A	3164; 1596 to the low- dose strategy and 1568 to the high- dose strategy.	CAD 65%	LVEF <=30%; NYHA class II, III, or IV, despite treatment with diuretics for ≥2 mo (Treatment for HF in ED or hospital within 6 mo required for pts in class II); Prior use of digitalis, ACEIs, or vasodilators allowed but not mandated; NYHA II-IV (mainly class II); LVEF 23%; SBP 126 mmHg; HR 80; NYHA class: III (few II and IV)	Acute coronary ischemic event or revascularization procedure within 2 mo; History of sustained or symptomatic ventricular tachycardia; Intolerant of ACEIs; SCr >2.5 mg/dL	Mortality from all causes	Combined risk of all- cause mortality and hospitalization for any reason; CV mortality, CV hospitalizations; All-cause mortality combined with CV hospitalizations; CV mortality combined with CV hospitalizations; Combined risk of fatal and nonfatal MI plus hospitalization for unstable angina	

3.12 у		Reduced mortality: p=0.30; 95% CI: -8-21%
N/A	Enalapril extended median survival by 9.4 mo in the combined trials (95% CI: 2.8–16.5, p=0.004).	In the prevention trial, 50.9% of the enalapril group had died c/w 56.4% of the placebo group (p=0.001). In the treatment trial, 79.8% of the enalapril group had died c/w 80.8% of the placebo group (p=0.01). Combined prevention and treatment trials: HR for death was 0.90 for the enalapril group c/w placebo group (95% CI: 0.84–0.95, p=0.0003).
5 y		High-dose group had 8% lower risk of all-cause mortality (p=0.128) and 10% lower risk of CV mortality (p=0.073) than low-dose group. Death or hospitalization for any reason, high-dose group had 12% lower risk than low-dose group, p=0.002. Total number of hospitalizations: high-dose group 13% fewer hospitalizations for any reason (p=0.021), 16% fewer hospitalizations for CV reason (p=0.05), and 24% fewer hospitalizations for HF (p=0.002).

SAVE, 1992 <u>1386652</u> (111)	To test the hypothesis that the long-term administration of captopril to survivors of acute MI who had baseline LV dysfunction but did not have overt HF requiring vasodilator therapy would reduce mortality, lessen deterioration in cardiac performance, and improve clinical outcome.	RCT	Beta-blockers 36%; Digitalis 26%; Nitrates 51%	2231; 1115; 1116	Ischemic 100%	Alive 3 d after MI; LVEF <40%; >21 y of age, but <80; Killip class I — 60% (60% of the ps did not have even transient pulmonary congestion at baseline/the time of their acute MI; EF 31%; BP 113/70; HR 78;	Failure to undergo randomization within 16 d after the MI; Relative contraindication to the use of an ACEIs or the need for such an agent; SCr > 2.5 mg/dl	Mortality from all causes	Mortality from CV causes; Mortality combined with a decrease in the EF of at least 9 units in surviving pts; CV morbidity (development of severe CHF or the recurrence of MI); Combination of CV mortality and morbidity; 2 endpoints of severe HF (treatment failure): 1st, development of overt HF necessitating treatment with ACEI and 2nd, hospitalization to treat CHD.	
AIRE 1993 <u>8104270</u> (112)	Investigated the effect of therapy with ACEI ramipril, on survival in pts who had shown clinical evidence of HF at any time after an acute MI. Also, to compare the incidences of progression to severe or resistant HF, nonfatal reinfarction and stroke between the 2 groups.	RCT		2006; 1014; 992		Aged ≥18 y, with a definite acute MI 3- 10 d before randomization; Clinical evidence of HF at any time since acute MI	Use of an ACEI considered to be mandatory	Mortality from all causes		

3.5 y	Mortality from all causes was significantly reduced in the captopril group (228 deaths, or 20%) as c/w the placebo group (275 deaths, or 25%); the RR: 19% (95% CI, 3-32%; p=0.019). RR:21% (95% CI, 5 -35%; p=0.014) for death from CV causes, 37% (95% CI, 20-50%; p<0.001) for the development of severe HF, 22% (95% CI, 4-37%; p=0.019) for CHF requiring hospitalization, and 25% (95% CI, 5-40%; p=0.015) for recurrent MI.
1.3 y	Mortality from all causes was significantly lower for pts on ramipril compared to pts on placebo. RR: 27%; 95% CI: 11- 40%; p=0.002. Prespecified secondary outcomes: risk reduction of 19% for the 1st validated outcome—namely, death, severe/resistant HF, MI, or stroke (95% CI: 5% - 31%; p=0.008).

RACE 1995	To determine	RCT	Beta blocker 16%;	1749; 876; 873	Ischemic	Consecutive pts	Contraindication to	Death from	Death from a CV	The mortality from all	24 lives were saved	During the study period, 304 pts in
	whether pts who LV		Calcium antagonist		100%	>18 y hospitalized	ACEI or a definite	any cause	cause, sudden death;	causes at 1 y was 24%.	after 1 mo of	the trandolapril group died (34.7%)
<u>477219</u>	dysfunction soon		28%; Diuretic			with MI; Criteria for	need for them;		Progression to severe		treating 1,000 pts	as did 369 in the placebo group
13)	after MI benefit from		66%; Nitrates			MI: chest pain or	Severe, uncontrolled		HF (hospital admission			(42.3%). RR: 0.78 (95% CI, 0.67 -
	long-term oral ACE		53%; Digoxin			electrocardiographi	DM;		for HF, death due to			0.91; p=0.001).
	inhibition.		28%.			c changes,			progressive HF, or HF			In every subgroup, treatment with
						accompanied by	Hyponatremia (<125		necessitating open-			trandolapril was associated with a
						>2X increase in ≥1	mmol/L);		label ACEI);			reduction in risk.
						cardiac enzymes;	Elevated SCr level		Recurrent infarction			
						LV dysfunction (EF	(2.3 mg/dL)		(fatal or nonfatal);			
						<35%);			Change in the wall-			
									motion index (EF)			
						NYHA class 1 -						
						41%; BP 121/76;						
						HR 81						

ACEI indicates angiotensin-converting-enzyme inhibitor; AF, atrial fibrillation; AIRE, Acute Infarction Ramipril Efficacy; APE, acute pulmonary embolism; ATLAS, Assessment of Treatment with Lisinopril and Survival; BP, blood pressure; CAD, coronary artery disease; CHD, chronic heart disease; CHD, chronic heart disease; CHD, chronic heart disease; CHD, chronic heart disease; CHF, congestive heart failure; CONSENSUS Cooperative North Scandinavian Enalapril Survival Study; Cr, creatinine; CV, cardiovascular; C/W, compared with; DM, diabetes mellitus; ED, emergency department; FU, follow-up; HF, heart failure.

Study Name, Author, Year	Aim of Study	Study Type	Background Therapy Pre-trial standard	Study Size N (Total) n (Experimental)	Etiology Ischemic/		Patient Population		Endpoints		Mortality	Trial Duration (Y)	Statistical Results
CHARM Alternativ e; Granger et al; (2003) <u>13678870</u> (114)	Discover whether ARB could improve outcome in pts not taking an ACEI (intolerant)	RCT	<i>treatment.</i> Diuretics, Beta-blockers (55%), spironolacton e 24%, Digoxin 45- 46%	<i>n (Control)</i> 2028; 1013; 1015	Non-Ischemic Ischemic 67- 70%	Inclusion Criteria Symptomatic HF, EF <40%, no ACEI (b/c of intolerance)	Exclusion Criteria	NYHA II-IV; mild to severe (<4% class IV); EF: 30%; BP: 130/70; HR: 74-75; AF: 25-26%	Primary Endpoint Composite of CV death or hospital admission for CHF	Secondary Endpoint CV death, hospital admission for CHF or nonfatal MI; CV death, CHF admission, nonfatal MI, nonfatal stroke; CV death, CHF admission, nonfatal MI, nonfatal stroke, coronary revascularization; Death (any cause); New DM	1st Y Mortality	2.8 y	Absolute reduction of 7 major events per 100 pts threated - NNT 14 pts to prevent 1 CV death or hospitalization. HR: 0.77 (95% CI: 0.67-0.89); p=0.0004
CHARM- ADDED; McMurray et al; (2003) <u>13678869</u> (115)	To investigate if ARB + ACEI in pts with chronic HF improve clincal outcomes	RCT	Beta blocker- 55%; spironolacton e 17%; Digoxin 58- 59%	2548; 1276; 1272	Ischemic 62- 63%	Symptomatic HF; EF <40%; Treatment with ACEI; Age >18 y		NYHA class II-IV; mild to severe (<3% class IV); EF 28%; BP 125/75; HR 74; AF 27%	Composite of CV death or hospital admission for CHF	CV death, hospital admission for CHF or nonfatal MI; CV death, CHF admission, nonfatal MI, nonfatal stroke; CV death, CHF admission, nonfatal MI, nonfatal stroke, coronary revascularization; Death (any cause); New DM		3.4 у	Absolute reduction of 4.4 pts with events per 100 pts treated- NNT of 23 to prevent 1 first event of CV death or CHF hospitalization. RR: 0.85 (95% CI: 0.75-0.96); p=0.011

2013 HF Guideline Data Supplement 19. ARBs (Section 7.3.2.3)

VALIANT; Pfeffer et al; (2003) <u>14610160</u> (116)	Compare the effect of an ARB, ACEI and the combination of the 2on mortality	Randomize d double blind multicenter trial	Beta- blockers; ASA	14,703 Valsartan:490 9 Captopril-: 4909 VAL + CAP: 4885	Ischemic 100% (MI inclusion criteria)	Age >18 y; Acute MI complicated by HF; LV systolic dysfunct (EF <35%), (<40% on radionuclide ventriculography); SBP >100 mmHg; Cr <2.5 mg/dL	Prior intolerance or contra- indication to ACEI/ ARB	NYHA I-IV; asymptomatic- severe, EF 35%; BP: 123/72; HR: 76	Death from any cause		12.5% VAL 12.3% VALCAP 13.2% CAP	2.1 y	VAL and CAP: 1.0 (97.5% CI 0.90-1.11); p=0.98 ; VAL+CAP and CAP: 0.98 (97.5% CI 0.89- 1.09); p=0.73
Val-HeFT; Cohn et al; (2001) <u>11759645</u> (117)	Evaluate long term effects of adding ARB to standard therapy for HF	RCT	Diuretics; Digoxin 67%; Beta blocker 35%; ACEI 93%	5010; 2511; 2499	Ischemic 57%	Age >18 y; NYHA II, II, IV; At least 2 wk of background meds including ACEIs; EF <40% and LVID >2.9 cm/BSA		NYHA II-III, IV (only ~2% class IV); Mild to severe; EF 27%; BP 123/76; AF 12%	Mortality; Combined endpoint of mortality and morbidity	Change in EF; • NYHA class, QoL scores; Signs and symptoms of HF		1.92 y	Mortality similar for the 2 treatment groups. For the combined endpoint: RR: 0.87; 97.5% CI, 0.77-0.97; p=0.009
HEAAL study; Lancet 2009; 374: 1840-48. <u>19922995</u> (118)	Compared the effects of high-dose vs low-dose losartan on clinical outcomes in pts with HF.	RCT	Diuretic drugs (77%), beta blockers (72%), and ARBs (38%).	3846 losartan 150 mg (n=1927) or 50 mg daily (n=1919).	IHD 64%	>18 y; NYHA class II–IV; LVEF <40%, with stable CV medical therapy for at least 2 wk; Intolerance to ACEI; Investigators encouraged to start beta blocker and titrate to a maximum, whenever possible	Pregnancy or lactation; known intolerance to ARBs; Systolic arterial blood pressure <90 mm Hg; Significant stenotic valvular heart disease; Active myocarditis; active pericarditis; Planned heart transplantation w/in 6 mo; coronary angioplasty, CABG, acute MI, UA pectoris, cerebrovascular accident, or TIA within the previous 12 wk; Suspected significant renal artery stenosis	NYHA II-IV (70% II); EF: 33%; BP: 124/77; HR: 71; AF; 28%	Death or admission for HF	Composite endpoint of death or CV admission. Additional prespecified outcomes included: death, death or all-cause admission, CV death, all- cause admission, CV admission, admission for HF, and changes in the severity of heart disease		4.7 y median f/u	Treating pts with 150 mg dose instead of 50 mg dose would result in 1 additional pt w/out the primary event at 4 y for every 31 pts treated. Composite: 828 (43%) pts in 150 mg group vs. 889 (46%) in 50 mg group died or admitted for HF (HR: 0.90; 95% CI: 0.82-0.99 p=0.027) • Components: 635 pts in 150 mg group vs. 665 in 50 mg group died (HR: 0.94, 95% CI: 0.84-1.04; p=0.24), and 450 vs. 503 pts admitted for HF (0.87, 0.76–0.98; p=0.025)
CHARM- Overall <u>13678868</u> (116)	Aimed to find out whether the use of an ARB could reduce mortality and morbidity.	RCT- parallel, randomized , double- blind,	Diuretics 83% Beta blockers 55% ACEI 43% Spironolacton e 17% Digoxin 43%	7601 pts (7599 with data) 3803 3796		>18 y; NYHA class II–IV for at least 4 wk; 3 distinct populations: pts with LVEF <40% who were not receiving ACEIs (previous intolerance) or who were currently receiving ACE, and pts with LVEF >40%	SCr > 265 mcmol /L, serum potassium >5.5 mmol/L Bilateral renal artery stenosis; symptomatic hypotension Women of childbearing potential not using adequate contraception; Critical aortic or mitral stenosis; MI, stroke, or open-heart surgery in the previous 4 wk; Use of an ARB in the previous 2 wk	NYHA II-IV NYHA II-IV Only 3% class IV	The primary outcome of the overall program: all-cause mortality; For all the component trials: CV death or hospital admission for CHF.		The annual CV death rate among the placebo group who had reduced LVEF was around 9% and was only 4% in the placebo group of CHARM- Preserved.	3.1 y	886 (23%) pts in candesartan and 945 (25%) in placebo group died (unadjusted HR: 0.91; 95% Cl: 0.83–1.00; p=0.055; covariate aHR: 0.90 95% CU: 0.82–0.99; p=0.032) • Fewer CV deaths (691 [18%] vs 769 [20%], unadjusted HR: 0.88; 95% Cl: 0.79–0.97; p=0.012; covariate aHR: 0.87; 95% Cl: 0.78– 0.96; p=0.006) • Hospital admissions for CHF (757 [20%] vs 918 [24%], p<0.0001)

ACEI indicates angiotensin-converting-enzyme inhibitor; AF, atrial fibrillation; ARB, angiotensin receptor blockers; ASA, aspirin; BP, blood pressure; BSA, body surface area; CABG, coronary artery bypass graft; CHARM, Candesartan in Heart Failure: Assessment of Reduction in Mortality and Morbidity; CHD, chronic heart disease; CHF, congestive heart failure; Cr, creatinine; CV, cardiovascular; DM, diabetes mellitus; EF, ejection fraction; FU, follow-up; HEAAL study, effects of high-dose versus low-dose losartan on clinical outcomes in patients with heart failure; HF, heart failure; HR, heart rate; IHD, ischemic heart disease; LV, left ventricular; LVD, left ventricular dilatation; MI, myocardial infarction; MV, mitral valve; N/A, not applicable; NNT, number needed to treat; NYHA, New York Heart Association; QoL, quality of life; pts, patients; SBP, systolic blood pressure; RCT, randomized control trial; SCr, serum creatinine; TIA, transient ischemic attack; UA, unstable angina; Val-HeFT, Valsartan Heart Failure Trial; and VALIANT, Valsartan in Acute Myocardial Infarction.

2013 HF Guideline Data Supplement 20. Beta Blockers (Section 7.3.2.4)

Study Name, Author, Year	Aim of Study	Study Type	Background Therapy	Study Size	Etiology	Patie	nt Population	Severity	Endpoints		
				N (Total)							
				n (Experimental)		Inclusion			Primary		
				n (Control)		Criteria	Exclusion Criteria		Endpoint	Secondary Endpoint	

	Mortali	ity	Trial Duration	Statistical Results
nt	Annualized Mortality	1st Y Mortality		

CIBIS II CIBIS Il investigators and committee members (1999) <u>10023943</u> (119)	Investigate the efficacy of bisoprolol in decreasing all- cause mortality in chronic HF	RCT- multicenter double-blind randiomised placebo controlled trial (Europe)	Diuretics + ACEI; [amiodarone allowed14- I6%]	2647; 1327; 1320	Documented Ischemic 50%	NYHA class III or IV EF: <35% 18-80 y old	Uncontrolled HTN; MI/UA w/in previous 3 mo; PTCA/CABG w/in previous 6 mo; AV-block >1st degree w/o PPM; Heart rate < 60bpm; resting SBP <100mmHg; renal failure; Reversible obstruct lung disease; Use of beta blocker	Moderate to severe. Mean BP: 130/80; Mean HR: 80; Mean EF: 28%; Mean LVEDD: 6.7 cm; AF: 20%	All-cause mortality	All-cause hospital admissions All CV deaths Combined endpoints Permanent treatment withdrawal	13.2% Placebo group 8.8% Treatm't group	N/A	1.3 y	HR: 0.66 (95% CI: 0.54-0.81); p<0.0001
MERIT-HF; MERIT study Group; (1999) <u>10376614</u> (120)	Investigate whether Metoprolol CR/XL lowered mortality in pts with decreased EF and symptoms of HF	RCT multicenter double-blind randiomised placebo controlled trial (Europe + USA)	Diuretics + ACEI [Amiodarone NOT allowed]	3991; 1991; 2001	Ischemic 65%	NYHA II-IV; 40-80 y old; LVEF <40% (36- 40 if 6-min walk <450m); heart rate >68 bpm	MI/UA w/in 28 d; Contra-indication or current use of beta blocker; PTCA/CABG w/in 4 mo Planned transplant or ICD; Heart block >1 st degree w/o PPM; SBP <100mmHg	Mild to severe. Mean BP: 130/78; Mean HR: 78; Mean EF 28%; AF 16-17%	All-cause mortality All-cause mortality in combination with all-cause admission to hospital	N/A	11.0% Placebo group 7.2% Treatm't group	N/A	1 y	Treatment of 27 pt for 1 y can prevent 1 death. 0.66 (95% CI: 0.53- 0.81); p=0.00009
COPERNICUS ; Packer et al; (2002) <u>12390947</u> (121)	Investigate whether Carvadiolo is beneficial in severe HF	RCTdouble blind	Diuretics (PO or IV) + ACEI (or ARB); [Amiodarone allowed 17- 18%]	2289; 1156; 1133	Ischemic 67%	Euvolumic NYHA class IV; LVEF <25%; No positive inotropes or vasodilators w/in 4 d	Pt requiring hospitalized intensive care; Use of positive inotropes or IV; vasodilators w/in 4- d; Coronary revascularization/MI/CVA/ sign VT or VF w/in 2 mo; SBP < 85 mmHg, Heart rate <68, Cr >2.8 mg/dL	Severe Mean BP: 123/76; Mean HR: 83; Mean EF 20%;	All-cause mortality	Combined risk of death or hospitalization-any reason; Combined risk of death or hospitalizationCV reason; Combined risk of death or hospitalizationHF reason; Pt global assessment	19.7% placebo [24.0% in pts with recent or recurrent cardiac decompensations]	18.5% in placebo group 11.4% in Carvedilol group	10.4 mo	Treating 1000 pt for 1 y led to savings of 70 premature deaths p=0.0014
SENIORS; Flather et al; (2005) <u>15642700</u> (122)	Assess effects of the beta blocker Nebivolol in pts ≥70 y regardless of EF.	RCT	Diuretics + ACEI (+aldosterone antagonist in 29%)	2128; 1067; 1061	Prior h/o CAD in 69%	Age >70 CHF with 1 of the following: hospitalization with CHF w/in a year or EF <35% w/in the past 6 mo	New HF therapy w/in 6 wk or change in drug therapy w/in 2 wk Contraindication to beta blockers, current use of beta blockers Significant renal dysfunction CVA w/in 3 mo.	Mild to severe Mean BP: 139/81; Mean HR: 79; Mean EF 36% (1/3 with EF >35%);	Composite of all-cause mortality or CV hospital admission	All-cause mortality Composite of all-cause mortality or all-cause hospital admissions All cause hospital admissions CV hospital admissions CV mortality Composite of CV mortality or CV hospital admissions NYHA class assessment; 6 MWT	N/A	N/A	1.75 у	Absolute risk reductio 4.2%; 24 pts would need to be treated for 21 mo to avoid one event RR: 0.86; 95% CI: 0.74-0.99; p=0.039
A Trial of the Beta-Blocker Bucindolol in Pt with Advanced Chronic HF The Beta- Blocker Evaluation of Survival Trial Investigators <u>11386264</u> (123)	Designed to determine whether bucindolol hydrochloride, a nonselective beta- adrenergic blocker and mild vasodilator, would reduce the rate of death from any cause among pt with advanced HF	RCT	ACEIs (if tolerated) [91% ACE; 7% ARB], for at least 1 mo. Before the publication of the results of the DIG trial, 12 digoxin therapies were	2708; 1354; 1354	Ischemic 59%	NYHA class III or IV HF LVEF <35% >18 y	Reversible cause of HF present Candidates for heart transplantation Cardiac revascularization procedure within the previous 60 d UA Heart rate <50 bpm, SBP <80mmHg Decompensated HF.	NYHA III or IV (92% class III) EF 23%; HR 82; BP 117/71; AF 12%	Death from any cause	Death from CV causes (death due to pump failure or an ischemic event or sudden death) Hospitalization for any reason Hospitalization because of HF Composite of death or heart transplantation LVEF at 3 and 12 mo MI; QoL; and any change in	For pt in NYHA functional class III, the annual mortality rate was 16% in the placebo group; For pt with NYHA class IV, the annual mortality rate in the placebo group was 28% OveralI : annual mortality of 17% in placebo group c/w	N/A	~2 y	449 pt in placebo group (33%) died, 411 in the bucindolol grou (30%; HR: 0.90; 95% CI, 0.78-1.02; unadjusted p=0.10; adjusted p=0.13)

	and to assess its effect in various subgroups defined by ethnic background and demographic criteria — specifically women and members of minority		required, but thereafter its use became discretionary [DIG 94%].							the need for concomitant therapy	15% in the bucindolol group.			
COMET; Poole-Wilson et al; (2003) <u>12853193</u> (124)	groups. To compare the effects of carvedilol and metoprolol on clinical outcome in pts with HF	RCT	Diuretics, ACEIs	3029; 1511 carvedilol; 1518 metoprolol tartrate	N/A	NYHA class II-IV EF <35% Previous CV admission	N/A	Mild to severe	All-cause mortality Composite endpoint of all- cause mortality, or all-cause admission	N/A	N/A	N/A	4.8 y	All-cause mortality 34% carvedilol and 40% metoprolol (HR: 0.83; 95% CI 0.74- 0.93; p=0.0017)
(CIBIS) III; 2005 <u>16143696</u> (125)	not currently exist to establish the optimum order of initiating chronic HF therapy (ACEI vs. beta blocker). This was the objective of the CIBIS III trial it compared the effect	Multicenter, prospective, randomized, open-label, blinded endpoint evaluation (PROBE) trial,24 with 2 parallel groups.	Diuretics 84%; Digoxin 32%	1010 Bisoprolol 505; Enalapril 505	CAD 62%	>65 y, NYHA class II or III, and LVEF <35% (By echo within the 3 mo) Clinically stable HF (without clinically relevant fluid retention or diuretic adjustment within 7 d)	Treatment with an ACEI, an ARB, or a beta blocker for >7 d during the 3 mo before randomization Heart rate at rest <60 bpm without a functioning pacemaker Supine SBP <100 mm Hg at rest SCr≥220 mmol/L AV block>1° without a functioning pacemaker Obstructive lung disease contraindicating bisoprolol treatment	NYHA II or III; mild to moderate CHF LVEF 29%; Heart rate 79; SBP 134	The primary endpoint was time-to-the-first- event of combined all- cause mortality or all-cause hospitalization	Combined endpoint at the end of the monotherapy phase and the individual components of the primary endpoint, at study end and at the end of the monotherapy phase. CV death CV hospitalization	N/A	N/A	Mean of 1.22±0.42 y (maximum of 2.10 y).	In the ITT sample, 178 pt (35.2%) with a primary endpoint in the bisoprolol-1 st group, and 186 (36.8%) in the enalapril-1 st group (absolute difference - 1.6%; 95% CI: -7.6 to 4.4%; HR: 0.94; 95% CI: 0.77–1.16; noninferiority for bisoprolol-first versus enalapril-1 st treatment p=0.019)

ACEI indicates angiotensin-converting-enzyme inhibitor; AF, atrial fibrillation; ARB, angiotensin receptor blocker; AV, atrioventricular; BP, blood pressure; CABG, coronary artery bypass graft; CHF, congestive heart failure; CIBIS II, Cardiac Insufficiency Bisoprolol Study II; COMET, Carvedilol Or Metoprolol European Trial; COPERNICUS, carvedilol prospective randomized cumulative survival; Cr, creatinine; CR/XL, controlled release; CV, cardiovascular; CVA, cerebrovascular accident; c/w, compared with; DIG, Digitalis Investigation Group; EF, ejection fraction; HF, heart failure; h/o, history of; HR, hazard ratio; ICD, ICD, implantable cardioverter defibrillator; ITT, intent to treat; MERIT-HF, Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure; MI, myocardial infarction; MWT, minute walk test; NYHA, New York Heart Association; PPM, permanent pacemaker; PTCA, percutaneous transluminal coronary angioplasty; Pts, patients; QoL, quality of life; RCT, randomized control trial; RR, relative risk; SBP, systolic blood pressure; SCr, serum creatinine; UA, unstable angina; USA, United States of America; VF, ventricular fibrillation; VT, ventricular tachycardia; and w/o, without.

References

1. Huelsmann M, Neuhold S, Resl M, et al. PONTIAC (NT-proBNP selected prevention of cardiac events in a population of diabetic patients without a history of cardiac disease): a prospective randomized controlled trial. J. Am. Coll. Cardiol. 2013; 62:1365-72.

2. Ledwidge M, Gallagher J, Conlon C, et al. Natriuretic peptide-based screening and collaborative care for heart failure: the STOP-HF randomized trial. JAMA. 2013; 310:66-74.

3. Brunner-La Rocca HP, Eurlings L, Richards AM, et al. Which heart failure patients profit from natriuretic peptide guided therapy? A meta-analysis from individual patient data of randomized trials. Eur. J. Heart Fail. 2015; 17:1252-61.

4. Don-Wauchope AC and McKelvie RS. Evidence based application of BNP/NT-proBNP testing in heart failure. Clin. Biochem. 2015; 48:236-46.

5. Xin W, Lin Z and Mi S. Does B-type natriuretic peptide-guided therapy improve outcomes in patients with chronic heart failure? A systematic review and meta-analysis of randomized controlled trials. Heart Fail Rev. 2015; 20:69-80.

6. Troughton RW, Frampton CM, Brunner-La Rocca HP, et al. Effect of B-type natriuretic peptide-guided treatment of chronic heart failure on total mortality and hospitalization: an individual patient meta-analysis. Eur. Heart J. 2014; 35:1559-67.

7. De Vecchis R, Esposito C, Di Biase G, et al. B-type natriuretic peptide-guided versus symptom-guided therapy in outpatients with chronic heart failure: a systematic review with meta-analysis. J Cardiovasc Med (Hagerstown). 2014; 15:122-34.

8. Balion C, McKelvie R, Don-Wauchope AC, et al. B-type natriuretic peptide-guided therapy: a systematic review. Heart Fail Rev. 2014; 19:553-64.

9. Savarese G, Trimarco B, Dellegrottaglie S, et al. Natriuretic peptide-guided therapy in chronic heart failure: a meta-analysis of 2,686 patients in 12 randomized trials. PLoS One. 2013; 8:e58287.

10. Li P, Luo Y and Chen YM. B-type natriuretic peptide-guided chronic heart failure therapy: a meta-analysis of 11 randomised controlled trials. Heart Lung Circ. 2013; 22:852-60.

11. Felker GM, Hasselblad V, Hernandez AF, et al. Biomarker-guided therapy in chronic heart failure: a meta-analysis of randomized controlled trials. Am. Heart J. 2009; 158:422-30.

12. Porapakkham P, Porapakkham P, Zimmet H, et al. B-type natriuretic peptide-guided heart failure therapy: a meta-analysis. Arch. Intern. Med. 2010; 170:507-14.

13. Troughton RW, Frampton CM, Yandle TG, et al. Treatment of heart failure guided by plasma aminoterminal brain natriuretic peptide (N-BNP) concentrations. Lancet. 2000; 355:1126-30.

14. Jourdain P, Jondeau G, Funck F, et al. Plasma brain natriuretic peptide-guided therapy to improve outcome in heart failure: the STARS-BNP Multicenter Study. J Am. Coll. Cardiol. 2007; 49:1733-9.

15. Pfisterer M, Buser P, Rickli H, et al. BNP-guided vs symptom-guided heart failure therapy: the Trial of Intensified vs Standard Medical Therapy in Elderly Patients With Congestive Heart Failure (TIME-CHF) randomized trial. JAMA. 2009; 301:383-92.

16. Lainchbury JG, Troughton RW, Strangman KM, et al. N-terminal pro-B-type natriuretic peptide-guided treatment for chronic heart failure: results from the BATTLESCARRED (NT-proBNP-Assisted Treatment To Lessen Serial Cardiac Readmissions and Death) trial. J Am Coll Cardiol. 2009; 55:53-60.

17. Berger R, Moertl D, Peter S, et al. N-terminal pro-B-type natriuretic peptide-guided, intensive patient management in addition to multidisciplinary care in chronic heart failure: a 3-arm, prospective, randomized pilot study. J Am Coll Cardiol. 2010; 55:645-53.

18. Eurlings LW, van Pol PE, Kok WE, et al. Management of chronic heart failure guided by individual N-terminal pro-B-type natriuretic peptide targets: results of the PRIMA (Can PRo-brain-natriuretic peptide guided therapy of chronic heart failure IMprove heart fAilure morbidity and mortality?) study. J. Am. Coll. Cardiol. 2010; 56:2090-100.

19. Persson H, Erntell H, Eriksson B, et al. Improved pharmacological therapy of chronic heart failure in primary care: a randomized Study of NT-proBNP Guided Management of Heart Failure--SIGNAL-HF (Swedish Intervention study--Guidelines and NT-proBNP AnaLysis in Heart Failure). Eur. J. Heart Fail. 2010; 12:1300-8.

20. Shah MR, Califf RM, Nohria A, et al. The STARBRITE trial: a randomized, pilot study of B-type natriuretic peptide-guided therapy in patients with advanced heart failure. J. Card Fail. 2011; 17:613-21.

21. Gaggin HK, Mohammed AA, Bhardwaj A, et al. Heart failure outcomes and benefits of NT-proBNP-guided management in the elderly: results from the prospective, randomized ProBNP outpatient tailored chronic heart failure therapy (PROTECT) study. J. Card Fail. 2012; 18:626-34.

22. Karlstrom P, Alehagen U, Boman K, et al. Brain natriuretic peptide-guided treatment does not improve morbidity and mortality in extensively treated patients with chronic heart failure: responders to treatment have a significantly better outcome. Eur. J. Heart Fail. 2011; 13:1096-103.

23. Maisel AS, Krishnaswamy P, Nowak RM, et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N. Engl. J. Med. 2002; 347:161-7.

24. van Kimmenade RR, Pinto YM, Bayes-Genis A, et al. Usefulness of intermediate amino-terminal pro-brain natriuretic peptide concentrations for diagnosis and prognosis of acute heart failure. Am. J. Cardiol. 2006; 98:386-90.

25. Maisel A, Hollander JE, Guss D, et al. Primary results of the Rapid Emergency Department Heart Failure Outpatient Trial (REDHOT). A multicenter study of B-type natriuretic peptide levels, emergency department decision making, and outcomes in patients presenting with shortness of breath. J. Am. Coll. Cardiol. 2004; 44:1328-33.

26. O'Connor CM, Hasselblad V, Mehta RH, et al. Triage after hospitalization with advanced heart failure: the ESCAPE (Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness) risk model and discharge score. J Am Coll Cardiol. 2010; 55:872-8.

27. Bayes-Genis A, Lopez L, Zapico E, et al. NT-ProBNP reduction percentage during admission for acutely decompensated heart failure predicts long-term cardiovascular mortality. J. Card Fail. 2005; 11:S3-S8.

28. Verdiani V, Ognibene A, Rutili MS, et al. NT-ProBNP reduction percentage during hospital stay predicts long-term mortality and readmission in heart failure patients. J. Cardiovasc. Med. (Hagerstown.). 2008; 9:694-9.

29. Bettencourt P, Azevedo A, Pimenta J, et al. N-terminal-pro-brain natriuretic peptide predicts outcome after hospital discharge in heart failure patients. Circulation. 2004; 110:2168-74.

30. Kociol RD, McNulty SE, Hernandez AF, et al. Markers of decongestion, dyspnea relief, and clinical outcomes among patients hospitalized with acute heart failure. Circ. Heart Fail. 2013; 6:240-5.

31. Kociol RD, Horton JR, Fonarow GC, et al. Admission, discharge, or change in B-type natriuretic peptide and long-term outcomes: data from Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF) linked to Medicare claims. Circ. Heart Fail. 2011; 4:628-36.

32. Flint KM, Allen LA, Pham M, et al. B-type natriuretic peptide predicts 30-day readmission for heart failure but not readmission for other causes. J. Am. Heart Assoc. 2014; 3:e000806.

33. Salah K, Kok WE, Eurlings LW, et al. A novel discharge risk model for patients hospitalised for acute decompensated heart failure incorporating N-terminal pro-B-type natriuretic peptide levels: a European coLlaboration on Acute decompeNsated Heart Failure: ELAN-HF Score. Heart. 2014; 100:115-25.

34. Cohen-Solal A, Logeart D, Huang B, et al. Lowered B-type natriuretic peptide in response to levosimendan or dobutamine treatment is associated with improved survival in patients with severe acutely decompensated heart failure. J. Am. Coll. Cardiol. 2009; 53:2343-8.

35. Logeart D, Thabut G, Jourdain P, et al. Predischarge B-type natriuretic peptide assay for identifying patients at high risk of re-admission after decompensated heart failure. J. Am. Coll. Cardiol. 2004; 43:635-41.

36. O'Brien RJ, Squire IB, Demme B, et al. Pre-discharge, but not admission, levels of NT-proBNP predict adverse prognosis following acute LVF. Eur. J. Heart Fail. 2003; 5:499-506.

37. Richards AM, Doughty R, Nicholls MG, et al. Plasma N-terminal pro-brain natriuretic peptide and adrenomedullin: prognostic utility and prediction of benefit from carvedilol in chronic ischemic left ventricular dysfunction. Australia-New Zealand Heart Failure Group. J Am Coll Cardiol. 2001; 37:1781-7.

38. Tang WH, Girod JP, Lee MJ, et al. Plasma B-type natriuretic peptide levels in ambulatory patients with established chronic symptomatic systolic heart failure. Circulation. 2003; 108:2964-6.

39. Januzzi JL, Jr., Chen-Tournoux AA and Moe G. Amino-terminal pro-B-type natriuretic peptide testing for the diagnosis or exclusion of heart failure in patients with acute symptoms. Am J Cardiol. 2008; 101:29-38.

40. Santaguida PL, Don-Wauchope AC, Ali U, et al. Incremental value of natriuretic peptide measurement in acute decompensated heart failure (ADHF): a systematic review. Heart Fail Rev. 2014; 19:507-19.

41. Hill SA, Booth RA, Santaguida PL, et al. Use of BNP and NT-proBNP for the diagnosis of heart failure in the emergency department: a systematic review of the evidence. Heart Fail Rev. 2014; 19:421-38.

42. Zaphiriou A, Robb S, Murray-Thomas T, et al. The diagnostic accuracy of plasma BNP and NTproBNP in patients referred from primary care with suspected heart failure: results of the UK natriuretic peptide study. Eur. J. Heart Fail. 2005; 7:537-41.

43. Son CS, Kim YN, Kim HS, et al. Decision-making model for early diagnosis of congestive heart failure using rough set and decision tree approaches. J Biomed Inform. 2012; 45:999-1008.

44. Kelder JC, Cramer MJ, Van WJ, et al. The diagnostic value of physical examination and additional testing in primary care patients with suspected heart failure. Circulation. 2011; 124:2865-73.

45. Booth RA, Hill SA, Don-Wauchope A, et al. Performance of BNP and NT-proBNP for diagnosis of heart failure in primary care patients: a systematic review. Heart Fail Rev. 2014; 19:439-51.

46. Dao Q, Krishnaswamy P, Kazanegra R, et al. Utility of B-type natriuretic peptide in the diagnosis of congestive heart failure in an urgent-care setting. J. Am. Coll. Cardiol. 2001; 37:379-85.

47. Davis M, Espiner E, Richards G, et al. Plasma brain natriuretic peptide in assessment of acute dyspnoea. Lancet. 1994; 343:440-4.

48. Cheng V, Kazanagra R, Garcia A, et al. A rapid bedside test for B-type peptide predicts treatment outcomes in patients admitted for decompensated heart failure: a pilot study. J. Am. Coll. Cardiol. 2001; 37:386-91.

49. Fonarow GC, Peacock WF, Horwich TB, et al. Usefulness of B-type natriuretic peptide and cardiac troponin levels to predict in-hospital mortality from ADHERE. Am. J. Cardiol. 2008; 101:231-7.

50. Zairis MN, Tsiaousis GZ, Georgilas AT, et al. Multimarker strategy for the prediction of 31 days cardiac death in patients with acutely decompensated chronic heart failure. Int. J. Cardiol. 2010; 141:284-90.

51. Peacock WFI, De Marco T, Fonarow GC, et al. Cardiac troponin and outcome in acute heart failure. N. Engl. J. Med. 2008; 358:2117-26.

52. Lee DS, Stitt A, Austin PC, et al. Prediction of heart failure mortality in emergent care: a cohort study. Ann. Intern. Med. 2012; 156:767-75.

53. Dhaliwal AS, Deswal A, Pritchett A, et al. Reduction in BNP levels with treatment of decompensated heart failure and future clinical events. J. Card Fail. 2009; 15:293-9.

54. Alonso-Martinez JL, Llorente-Diez B, Echegaray-Agara M, et al. C-reactive protein as a predictor of improvement and readmission in heart failure. Eur. J. Heart Fail. 2002; 4:331-6.

55. Dieplinger B, Gegenhuber A, Kaar G, et al. Prognostic value of established and novel biomarkers in patients with shortness of breath attending an emergency department. Clin. Biochem. 2010; 43:714-9.

56. Ilva T, Lassus J, Siirila-Waris K, et al. Clinical significance of cardiac troponins I and T in acute heart failure. Eur. J. Heart Fail. 2008; 10:772-9.

57. Januzzi JL, Jr., Peacock WF, Maisel AS, et al. Measurement of the interleukin family member ST2 in patients with acute dyspnea: results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) study. J. Am. Coll. Cardiol. 2007; 50:607-13.

58. Manzano-Fernandez S, Mueller T, Pascual-Figal D, et al. Usefulness of soluble concentrations of interleukin family member ST2 as predictor of mortality in patients with acutely decompensated heart failure relative to left ventricular ejection fraction. Am. J. Cardiol. 2011; 107:259-67.

59. Rehman SU, Mueller T and Januzzi JL, Jr. Characteristics of the novel interleukin family biomarker ST2 in patients with acute heart failure. J. Am. Coll. Cardiol. 2008; 52:1458-65.

60. Shah RV, Chen-Tournoux AA, Picard MH, et al. Galectin-3, cardiac structure and function, and long-term mortality in patients with acutely decompensated heart failure. Eur. J. Heart Fail. 2010; 12:826-32.

61. Solomon SD, Zile M, Pieske B, et al. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet. 2012; 380:1387-95.

62. McMurray JJV, Packer M, Desai AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 2014; 371:993-1004.

63. Yusuf S, Teo KK, Pogue J, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N. Engl. J. Med. 2008; 358:1547-59.

64. Yusuf S, Teo K, Anderson C, et al. Effects of the angiotensin-receptor blocker telmisartan on cardiovascular events in high-risk patients intolerant to angiotensin-converting enzyme inhibitors: a randomised controlled trial. Lancet. 2008; 372:1174-83.

65. Sakata Y, Shiba N, Takahashi J, et al. Clinical impacts of additive use of olmesartan in hypertensive patients with chronic heart failure: the supplemental benefit of an angiotensin receptor blocker in hypertensive patients with stable heart failure using olmesartan (SUPPORT) trial. Eur Heart J. 2015; 36:915-23.

66. Eschalier R, McMurray JJV, Swedberg K, et al. Safety and efficacy of eplerenone in patients at high risk for hyperkalemia and/or worsening renal function: analyses of the EMPHASIS-HF study subgroups (Eplerenone in Mild Patients Hospitalization And SurvIval Study in Heart Failure). J Am Coll Cardiol. 2013; 62:1585-93.

67. Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N. Engl. J. Med. 1999; 341:709-17.

68. Rouleau JL, Pfeffer MA, Stewart DJ, et al. Comparison of vasopeptidase inhibitor, omapatrilat, and lisinopril on exercise tolerance and morbidity in patients with heart failure: IMPRESS randomised trial. Lancet. 2000; 356:615-20.

69. Packer M, Califf RM, Konstam MA, et al. Comparison of omapatrilat and enalapril in patients with chronic heart failure: the Omapatrilat Versus Enalapril Randomized Trial of Utility in Reducing Events (OVERTURE). Circulation. 2002; 106:920-6.

70. Kostis JB, Packer M, Black HR, et al. Omapatrilat and enalapril in patients with hypertension: the Omapatrilat Cardiovascular Treatment vs. Enalapril (OCTAVE) trial. Am J Hypertens. 2004; 17:103-11.

71. Bohm M, Robertson M, Ford I, et al. Influence of cardiovascular and noncardiovascular co-morbidities on outcomes and treatment effect of heart rate reduction with ivabradine in stable heart failure (from the SHIFT Trial). Am J Cardiol. 2015; 116:1890-7.

72. Swedberg K, Komajda M, Böhm M, et al. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet. 2010; 376:875-85.

73. Fox K, Ford I, Steg PG, et al. Ivabradine in stable coronary artery disease without clinical heart failure. N. Engl. J. Med. 2014; 371:1091-9.

74. Fox K, Ford I, Steg PG, et al. Ivabradine for patients with stable coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a randomised, double-blind, placebo-controlled trial. Lancet. 2008; 372:807-16.

75. Beckett NS, Peters R, Fletcher AE, et al. Treatment of hypertension in patients 80 years of age or older. N. Engl. J. Med. 2008; 358:1887-98.

76. Piller LB, Baraniuk S, Simpson LM, et al. Long-term follow-up of participants with heart failure in the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). Circulation. 2011; 124:1811-8.

77. Kostis JB, Davis BR, Cutler J, et al. Prevention of heart failure by antihypertensive drug treatment in older persons with isolated systolic hypertension. SHEP Cooperative Research Group. JAMA. 1997; 278:212-6.

78. Yusuf S, Pfeffer MA, Swedberg K, et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet. 2003; 362:777-81.

79. Cleland JG, Swedberg K, Follath F, et al. The EuroHeart Failure survey programme-- a survey on the quality of care among patients with heart failure in Europe. Part 1: patient characteristics and diagnosis. Eur Heart J. 2003; 24:442-63.

80. Massie BM, Carson PE, McMurray JJ, et al. Irbesartan in patients with heart failure and preserved ejection fraction. N. Engl. J Med. 2008; 359:2456-67.

81. Redfield MM, Anstrom KJ, Levine JA, et al. Isosorbide Mononitrate in Heart Failure with Preserved Ejection Fraction. N. Engl. J Med. 2015; 373:2314-24.

82. Redfield MM, Chen HH, Borlaug BA, et al. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA. 2013; 309:1268-77.

83. Pitt B, Pfeffer MA, Assmann SF, et al. Spironolactone for heart failure with preserved ejection fraction. N. Engl. J Med. 2014; 370:1383-92.

84. Pfeffer MA, Claggett B, Assmann SF, et al. Regional variation in patients and outcomes in the Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist (TOPCAT) trial. Circulation. 2015; 131:34-42.

85. Chen Y, Wang H, Lu Y, et al. Effects of mineralocorticoid receptor antagonists in patients with preserved ejection fraction: a meta-analysis of randomized clinical trials. BMC Med. 2015; 13:10.

86. Ponikowski P, van Veldhuisen DJ, Comin-Colet J, et al. Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiency. Eur. Heart J. 2015; 36:657-68.

87. Anker SD, Comin CJ, Filippatos G, et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N. Engl. J. Med. 2009; 361:2436-48.

88. Swedberg K, Young JB, Anand IS, et al. Treatment of anemia with darbepoetin alfa in systolic heart failure. N. Engl. J Med. 2013; 368:1210-9.

89. Xie X, Atkins E, Lv J, et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and metaanalysis. Lancet. 2016; 387:435-43.

90. Wright JT, Jr., Williamson JD, Whelton PK, et al. A Randomized Trial of Intensive versus Standard Blood-Pressure Control. N. Engl. J Med. 2015; 373:2103-16.

91. Williamson JD, Supiano MA, Applegate WB, et al. Intensive vs standard blood pressure control and cardiovascular disease outcomes in adults aged >/=75 years: A randomized clinical trial. JAMA. 2016; 315:2673-82.

92. Law MR, Morris JK and Wald NJ. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ. 2009; 338:b1665.

93. Aronow WS, Ahn C and Kronzon I. Effect of propranolol versus no propranolol on total mortality plus nonfatal myocardial infarction in older patients with prior myocardial infarction, congestive heart failure, and left ventricular ejection fraction > or = 40% treated with diuretics plus angiotensin-converting enzyme inhibitors. Am J Cardiol. 1997; 80:207-9.

94. van Veldhuisen DJ, Cohen-Solal A, Bohm M, et al. Beta-blockade with nebivolol in elderly heart failure patients with impaired and preserved left ventricular ejection fraction: Data From SENIORS (Study of Effects of Nebivolol Intervention on Outcomes and Rehospitalization in Seniors With Heart Failure). J Am Coll Cardiol. 2009; 53:2150-8.

95. Lv J, Ehteshami P, Sarnak MJ, et al. Effects of intensive blood pressure lowering on the progression of chronic kidney disease: a systematic review and meta-analysis. CMAJ. 2013.

96. Thomopoulos C, Parati G and Zanchetti A. Effects of blood pressure lowering on outcome incidence in hypertension: 7. Effects of more vs. less intensive blood pressure lowering and different achieved blood pressure levels - updated overview and meta-analyses of randomized trials. J Hypertens. 2016; 34:613-22.

97. McEvoy RD, Antic NA, Heeley E, et al. CPAP for prevention of cardiovascular events in obstructive sleep apnea. N. Engl. J. Med. 2016; 375:919-31.

98. Holmqvist F, Guan N, Zhu Z, et al. Impact of obstructive sleep apnea and continuous positive airway pressure therapy on outcomes in patients with atrial fibrillation-Results from the Outcomes Registry for Better Informed Treatment of Atrial Fibrillation (ORBIT-AF). Am Heart J. 2015; 169:647-54.

99. Cowie MR, Woehrle H, Wegscheider K, et al. Adaptive Servo-Ventilation for Central Sleep Apnea in Systolic Heart Failure. N. Engl. J Med. 2015; 373:1095-105.

100. Arzt M, Floras JS, Logan AG, et al. Suppression of central sleep apnea by continuous positive airway pressure and transplant-free survival in heart failure: a post hoc analysis of the Canadian Continuous Positive Airway Pressure for Patients with Central Sleep Apnea and Heart Failure Trial (CANPAP). Circulation. 2007; 115:3173-80.

101. Bradley TD, Logan AG, Kimoff RJ, et al. Continuous positive airway pressure for central sleep apnea and heart failure. N. Engl. J. Med. 2005; 353:2025-33.

102. Ruttanaumpawan P, Logan AG, Floras JS, et al. Effect of continuous positive airway pressure on sleep structure in heart failure patients with central sleep apnea. Sleep. 2009; 32:91-8.

103. Kaneko Y, Floras JS, Usui K, et al. Cardiovascular effects of continuous positive airway pressure in patients with heart failure and obstructive sleep apnea. N. Engl. J. Med. 2003; 348:1233-41.

104. Mansfield DR, Gollogly NC, Kaye DM, et al. Controlled trial of continuous positive airway pressure in obstructive sleep apnea and heart failure. Am. J. Respir. Crit Care Med. 2004; 169:361-6.

105. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). The CONSENSUS Trial Study Group. N. Engl. J. Med. 1987; 316:1429-35.

106. Swedberg K, Kjekshus J and Snapinn S. Long-term survival in severe heart failure in patients treated with enalapril. Ten year follow-up of CONSENSUS I. Eur. Heart J. 1999; 20:136-9.

107. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. The SOLVD Investigators. N. Engl. J. Med. 1991; 325:293-302.

108. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. The SOLVD Investigators. N. Engl. J Med. 1992; 327:685-91.

109. Jong P, Yusuf S, Rousseau MF, et al. Effect of enalapril on 12-year survival and life expectancy in patients with left ventricular systolic dysfunction: a follow-up study. Lancet. 2003; 361:1843-8.

110. Packer M, Poole-Wilson PA, Armstrong PW, et al. Comparative effects of low and high doses of the angiotensin-converting enzyme inhibitor, lisinopril, on morbidity and mortality in chronic heart failure. ATLAS Study Group. Circulation. 1999; 100:2312-8.

111. Pfeffer MA, Braunwald E, Moyé LA, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction: results of the Survival and Ventricular Enlargement Trial. The SAVE Investigators. N. Engl. J Med. 1992; 327:669-77.

112. Effect of ramipril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure. The Acute Infarction Ramipril Efficacy (AIRE) Study Investigators. Lancet. 1993; 342:821-8.

113. Kober L, Torp-Pedersen C, Carlsen JE, et al. A clinical trial of the angiotensin-converting-enzyme inhibitor trandolapril in patients with left ventricular dysfunction after myocardial infarction. Trandolapril Cardiac Evaluation (TRACE) Study Group. N. Engl. J Med. 1995; 333:1670-6.

114. Granger CB, McMurray JJ, Yusuf S, et al. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function intolerant to angiotensin-converting-enzyme inhibitors: the CHARM-Alternative trial. Lancet. 2003; 362:772-6.

115. McMurray JJ, Ostergren J, Swedberg K, et al. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function taking angiotensin-converting-enzyme inhibitors: the CHARM-Added trial. Lancet. 2003; 362:767-71.

116. Pfeffer MA, Swedberg K, Granger CB, et al. Effects of candesartan on mortality and morbidity in patients with chronic heart failure: the CHARM-Overall programme. Lancet. 2003; 362:759-66.

117. Cohn JN, Tognoni G and Investigators VHFT. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N. Engl. J. Med. 2001; 345:1667-75.

118. Konstam MA, Neaton JD, Dickstein K, et al. Effects of high-dose versus low-dose losartan on clinical outcomes in patients with heart failure (HEAAL study): a randomised, double-blind trial. Lancet. 2009; 374:1840-8.

119. Authors CI. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet. 1999; 353:9-13.

120. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet. 1999; 353:2001-7.

121. Packer M, Fowler MB, Roecker EB, et al. Effect of carvedilol on the morbidity of patients with severe chronic heart failure: results of the carvedilol prospective randomized cumulative survival (COPERNICUS) study. Circulation. 2002; 106:2194-9.

122. Flather MD, Shibata MC, Coats AJ, et al. Randomized trial to determine the effect of nebivolol on mortality and cardiovascular hospital admission in elderly patients with heart failure (SENIORS). Eur Heart J. 2005; 26:215-25.

123. A trial of the beta-blocker bucindolol in patients with advanced chronic heart failure. N. Engl. J. Med. 2001; 344:1659-67.

124. Poole-Wilson PA, Swedberg K, Cleland JG, et al. Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial. Lancet. 2003; 362:7-13.

125. Willenheimer R, van Veldhuisen DJ, Silke B, et al. Effect on survival and hospitalization of initiating treatment for chronic heart failure with bisoprolol followed by enalapril, as compared with the opposite sequence: results of the randomized Cardiac Insufficiency Bisoprolol Study (CIBIS) III. Circulation. 2005; 112:2426-35.